Writing OpenCL ™ for FPGASs

IWOCL

ee

Agenda

Intel® FPGA SDK for OpenCL™

Optimizing ND Range Kernels

Single Work-Item Execution

Using Channels / Pipes

Optimizing Memory

Innovation Across the Board

CYCLONE’

inside”

STRATIX"

inside”

FPGA/CPLD FPGA FPGA FPGA PowerSoCs
Lowest Cost, Cost/Power Balance Mid-range FPGAs Optimized for High-efficiency
Lowest Power SoC & Transceivers SoC & Transceivers High Bandwidth ~ Power Management

RESOURCES

Design Development
Software Kits

Embedded Soft and
Hard Processors

Nios® Il

Intellectual
Property (IP)

Intel’ Quartus’ Prime

Design Software

Arm* Intel FPGA SDK for OpenCL"

® Industrial =i -
= Computing ["
/ ,

= Enterprise

Programmable Solutions Group

Intel® FPGA SDK for OpenCL™

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Intel® FPGA SDK for OpenCL™ Section Agenda

= Introduction
» |ntel® FPGA SDK for OpenCL™ Usage

= Qverview of Debug and Optimizing Reports

nnnnnnnnnn the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 5

Intel® FPGA SDK for OpenCL™ Usage

Ope'nCL

Kerbels

Intel’ FPGA SDK for OpenCL’ OpenCL

Host Pijogram

Offline Compiler
(OpenCL Kernel Compiler)

Exeaﬂable Biary .
; Programming
File ;
F File
\ !
i

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

FPGA Architecture DSP Block

'] Multiplier

ANNNENNNNNR NN | |

= Massive Parallelism

— Millions of logic elements

— Thousands of embedded memory blocks

— Thousands of Variable Precision DSP blocks
— Programmable routing

— Dozens of High-speed transceivers
— Various built-in hardened IP Adaptive Logic Module (ALM)

u *_\u_u_u_u_u_u_ Lo
FPGAAdvantages = —dJdEEEA . S s e T B ;:)czﬂirr?éngvai)clﬁ
— Custom hardware! ‘:,.,J;J:j,_-...;{:};...;ﬁ}_ ‘| }‘-,,.

- Efficient processing

1

— Low power

— Ability to reconfigure

— Fast time-to-market mon oo nom

Programmable Solutions Group

FPGA Architecture for OpenCL™ Implementation

Precompiled periphery (BSP)

FPGA
Processor 4 Host Interface 8
Py
" 7‘ R — S k.
I Global Memory Interconnect \
| < :
[
[€ [
I |
. | <€ |
Custom Built Kernel Kernel I
Kernel System | Plpellne Pipeline I
I |
| |
| |
\

*OpenCL and the OpenCL logo are trademarks of Apple Inc. use

Programmable Solutions Group

OpenCL™ Kernels to Dataflow Circuits

Each kernel is converted into custom dataflow hardware (Compute Unit)

su_atomic.y
su_basic_coalescerw

su_burst_master.v

= Gain the benefits of FPGAs without the length design process &

su_bursting_load_stores.v

» Implement C operators as circuits

su_enabled.w

su_ic_top.wv
su_non_aligned_write.v

— HDL code located in <SDK Installation>\ip —

2] lsu_pipelined.v

— Load Store units to read/write memory

— Arithmetic units to perform calculations

— Flow control units iillllllllll

— Connect circuits according to data flow in the kernel

= May replicate circuit to accelerate algorithm

. *OpenCL and the OpenCL | tradi ks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group penCL and the OpenCL logo are trademarks of Appl used by permissior ror |ntel ~ 9

Compilation Example

Kernel compiled into dataflow circuit with flow control

» Includes branch and merge units For Entry
__kernel my kernel (_ global float *a, Load ali] Load bJ[i]

__global float *b,
__global float *c,

int N) afi] + bfi]
{
int 1i; ‘1’ _
for (1 = 0; 1 < N; i++) Store c[i]
cli] = a[i] + b[i]; i
} For End €

Programmable Solutions Group (intel. . 10

Pipeline Execution of NDRange Kernels and Loops

= For NDRange work-items and loop iterations
= On each cycle the portions of the pipeline are processing different threads

= While work-item 2 is being loaded, work-item 1 is being added, and work-item
0 is being stored

Example Workgroup with 8 work-items

——
Thread IDs 8 | Load BT

771707 7]6l5]4 == L1 see g
3 Load >, >

Simultaneous Multithreading Execution Model

Tasks distributed through multiple queues can run in parallel
= Same device or multiple devices

= AOC implements dedicated compute units for each kernel
— Different kernels can run in parallel

Implicit Parallelism Sequential execution Task Parallelism in
in Algorithm with one queue OpenCL™ implementation
w myqueue.enqueueNDRangeKernel(cl_bar,..) Q2.clEnqueueNDrangeKernel(cl_bar,..)

Device
foo_CU Cl_f00 | s |
K1 K2 cl_bar, cl_foo K1

. *0 CL and the O CL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group P EalL G USLSAIRTE . A FRMESE - |nte| . 12

Intel® FPGA SDK for OpenCL™ Section Agenda

» |ntel® FPGA SDK for OpenCL™ Usage

— SDK Content - AOCL Utility
— Kernel Compilation - Runtime
— Host Compilation - Libraries

nnnnnnnnnn the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 13

SDK Components

Offline Compiler (AOC)
— Translates your OpenCL™ C kernel source file into an Intel® FPGA hardware image

— Requires Intel Quartus® Development Environment

Host Libraries
— Provides the OpenCL host API to be used by OpenCL host applications

AOCL Utility

— Perform various tasks related to the board, drivers, and compile process

Intel Code Builder for OpenCL API with FPGA kernel development framework

— Provides Microsoft* Visual Studio or Eclipse-based IDE for code development

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group s (7= Y d A . A FRMESE ! |nte| . 14

Compiling Kernels

(__global float *a,
__global float *b,
__global float *y)

Run the Offline Compiler {
int gid = get global id(0);
ylgid] = a[gid] + b[gid];

}

— List available boards within the current board package ‘

" 30Cc —-board=<board> <kernel file>
Compiler

— Compile the kernel to a board in the board package

" 30c —-list-boards

— Generates the kernel hardware system and compiles it using
the Intel® Quartus® Prime software to target a specific board

Programmable Solutions Group

OpenCL™ Libraries

Create libraries from RTL or OpenCL™ source and call those library functions
from User OpenCL code

Verilog
OpenCL™

See the Intel® FPGA SDK for OpenCL Programming Guide for detailed examples

User’s OpenCL

code

. *OpenCL and the OpenCL | trademarks of Apple Inc. used by permission of Khronos : F
Programmable Solutions Group penCL and the OpenCL logo are trademarks of Appl used by permissior ror |ntel . 16

aoc Output Files

» <kernel file>.aoco

— Intermediate object file representing the created hardware system

= <kernel file>.aocx

— Kernel executable file used to program FPGA

= |Inside <kernel file> folder

— <kernel file folder>\reports\report.html
— Interactive HTML report
— Static report showing optimization, detailed area, and architectural information

— <kernel file>.log compilation log

— Intel® Quartus® Prime software generated source and report files

Programmable Solutions Group (intel. . 17

Intel FPGA Preferred Board for OpenCL

= |ntel® FPGA Preferred Board for OpenCL™
— Available for purchase from preferred partners

— Passes conformance testing

= Download and install Intel FPGA OpenCL compatible BSP from vendor
— Supplies board information required by the offline compiler
— Provides software layer necessary to interact with the host code including drivers

A Nallatech Masid IECFLEX: . Gopeoconoune

Custom Embedded ystems

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Custom Platform

Framework of host software and FPGA interface design to enable the use of
OpenCL™ on a custom board

» FPGA design, software, and board bring up skills required

= Custom BSP provides Host Software FPGA Board Hardware

. User OpenCL host DMA
— Timing-closed Hardware appiition -3
— MMD software layer * 1 l—u DDR/QDR

OpenCL Lib . .
— Some AOCL utility function ’ HAL ~
MMD <= |nterface €= klf;mel € |P/XCVR <=p
Provided by Intel® User-Provided Custom

User Application
FPGA Platform PP

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos A E
Programmable Solutions Group 2 (7= 4 d A . A FRMESE ! |nte| . 19

Compiling the Host Program

main () {
read data(..
manipulate(..

);
)

Include CL/opencl.h or CL/cl.hpp

Use a conventional C compiler (Visual Studio*/GCC)

Add SINTELFPGAOCLSDKROOT/host/include to

your file search path
— Recommended to use aocl compile-config ﬁ»

Link to Intel® FPGA OpenCL™ libraries

— Link to libraries located in the
SINTELFPGAOCLSDKROOT /host/<0S>/1ib directory

— Recommended to use aocl link-config

. *OpenCL and the OpenCL | tradi ks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group penCL and the OpenCL logo are trademarks of Appl used by permissior ror |ntel ~ 20

Intel® FPGA SDK for OpenCL™ Section Agenda

= Qverview of Debug and Optimizing Reports

nnnnnnnnnn the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 21

Kernel Development Flow and Tools

Modify kernel.cl

v

Emulator (secs)

v

HTML Report (~1 min)

Loop Optimization Report —
Detailed Area Report
Architectural Viewer

¥

Profiler (full compile time)

Functional bugs?

Programmable Solutions Group

Debugging Kernels Using printf

printf instructions in kernels are supported

= Conforms to OpenCL™ 1.2 specification

— No usage limitations
— Can use inside if-then-else statements, loops, etc.

= Order of concurrent calls (from different work-items) are not guaranteed

» aoc allocates 64kB global buffer for printfs
— Once kernel execution completes, contents are printed to standard output

— If the buffer overflows, kernel execution stalls until the host reads and prints the
buffer contents

*= Due to global memory use,

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 23

Programmable Solutions Group

Emulator

Enable kernel functional debug on x86 systems

= Quickly generate x86 executables that represent the kernel

aoc —march=emulator <kernel file>

kernel void accel (..) {

b R N “ ./kernel tb..
gid = get global id(0); l—/ aoc l—f ‘ S -

out [gid]=proc (data[gid]) ; Running

Compiler

}

» Debug support for

— Standard OpenCL™ syntax, Channels, Printf statements

= Set environment prior to executing host application
set CL CONTEXT EMULATOR DEVICE INTELFPGA=<target board>

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

HTML Report

Static report showing optimization, area, and architectural information

= Automatically generated with the object file (aoc —c)
— Located in <kernel file folder>\reports\report.html

= Dynamic reference information to original source code

= Sections
— Loop Analysis
— Area Report
— Architectural Viewer
— Kernel Memory Viewer

HTML Loop Analysis Optimization Report

= Actionable feedback on pipeline status of loops
— Shows loop carried dependencies and bottlenecks

— Especially important for single work-item kernels since they have an outer loop

Report: summation - Mozilla Firefox - o x
. < Report: summation x| 4+
= Shows loop unrolling status s e e —
Reports Vie orts_v ;
= Shows loop nesting relationshi
P g P — —
Kernet: summation (sumenationcte) 5 F"::‘l

Programmable Solutions Group (intel. . 26

HTML Area Report

Generate detailed estimated area utilization report of kernel code

» Detailed breakdown of resources by source line or by system blocks

port: summation - Mozilla Firef

= Provides architectural details of HW O e —— tasav =

— Suggestions to resolve inefficiencies

Programmable Solutions Group (intel. . 27

HTML System Viewer

= Displays kernel pipeline implementation and memory access implementation

@ Report: summation x|+

u VI S u a.l I Z e € @ |file://fhome/student/sandbox/OCL_17_1/summation/reports/report.html#views ¢ ||Q search B ¥ & O

Reports View reports...~

System viewer .Rssslzoom.‘ |Clear Selection| Control ¥ Memory summation.cl - *®

_ Load_store unlts 1 _kernel void sunmation (
2 __global const float *restrict input,
3 “global float *restrict output,
4 Unsigned rows,
5 unsigned cols)
- ccesses 5 ¢
7 float result = 0;
8 for (unsigned i=B; i<rows; i++)
o
10 for (unsigned j=B; jecols; j++)
1~ {
- a S 12 result += inputl(i*cols*j)1;
13
14 }
mmmmm 15 *output = result;
. 16 1
— Latencies s

— On-chip memory
— Implementation

Width 32 bits
— Accesses
Stall-free No
Start Cycle 8
Latency 143

Programmable Solutions Group (intel. . 28

HTML Kernel Memory Viewer

Helps you identify data movement bottlenecks in
your kernel design. lllustrates:

= Memory replication
= Banking
= Implemented arbitration

» Read/write capabilities of each memory port

Programmable Solutions Group

HLD FPGA Reports (Beta)

Memor y list

''''''

''''''

mmmmmmmmmmm

’’’’’’’

View reports...»

Kernel memory viewer

32768 bytes

555555

Dynamic Profiler

1. Compile kernel with -profile option 2. Run host application

— Inserts profiling counters into the HW — Generates profile.mon file

aoc -profile <kernel file> 3. View data using the profiler GUI

Kernel Pipeline aocl report <kernel file>.aocx profile.mon

[source code | kemel Execution | ft1a | output_kemel | input_kemel |
[Line# Source Code Attibutes Stalls Occupancy® | Bandwidih
il ‘#define DEPTHO _aftibute__(depth(0))) i
6
7 channel TYPE DEPTHO input_stream0, DEPTHO input_stream1, DEPTHO inp. SE —=| L
8
I 9
I 10 kernel void input_kernel(global TYPE *src) {
1 inti = get_global_id(0);
1 12 intbase = (i >> (LOGN - 2)) << LOGN;
| 13 intoffset=i & (N/4-1)
14 write_channel_altera(input_stream0,srcibase + offset]); 0: __global{DDR},read 0:3.13% 0:100.0% 0: 1836.0MBJs, 100.00%Efficiency
I 15 ‘write_channel_altera(input_stream1,srcibase + N/ 2 + offset]); 0: _globaDDR},read 0:6.25% 0:100.0% 0: 1836.0MBIs, 100.00%Effciency
16 wiite_channel_altera(input_stream2,srcoase + N /4 + offset); 0:_glovallDDR}read | 0:9.37% 0:100.0% 0:1836.0MB/5, 100.00%Effciency
I 17 ‘write_channel_altera(input_stream3,srcibase + 3 * N /4 + offsef]); 0: _globa{DDR},read 0:125% 0:100.0% 0: 1836.0MBJs, 100.00%Efficiency
18 }
I 19
I 20 kernel void output_kernel(global TYPE *dest) {
21 int] = get_global_id(0) * 4
I 22 dest]] = read_channel_altera(output_stream0); 0: channel read 0:0.0% 0:100.0% 0: 1837.0MB/s
1 2 dest + (channelread) ©0%) (100.0%) (1837.0MBls)
24 destj+ (channe read) ©00%) (100.0%) (1837.0MB)S)
1 2 dest] + 3] = read_channel_altera(output_stream3); (channelreaq) ©0%) (100.0%) (1837.01Bls)
26 }
I 27
I-—————-—————> ap——) 28
29 kernel void fittd(int times, int accessMemory) {
30 Il declare array used for delay elements inside fit
Sto re 31 TYPE shregiN + 4* (LOGN - 2)}
32
33 /Ineeds to run an extra "N / 4 - 1 iterations to drain the last outputs. "

Programmable Solutions Group

Profiler Reports — Source Code Tab

Displays statistics about memory and channel accesses

[source Code | K'mel Execution | ftid | output kemel | input kemel |
Line # | Source Code Aftributes | Stall% | Occupancy® | Bandwidth Stall%: Percentage of time current data
. 5 #define DEPTHO __aitribute__ ((depth(0))) a o . .
5 access is causing pipeline stalls
7 channel TYPE DEPTHO input_stream0, DEPTHO input_stream1, DEPTHO inp... | -
8 I
9 o
10 kernel void input_kernel(global TYPE *src) { OCCU pancy% Percentage Of Overa” prOflle
11 inti = get_global_id(0); . . .
12 intbass = 1> (LOGN - 2)) << LOGN: time when the current data access is active
13 intoffset=i & (N/4-1); (
14 write_channel_altera(input_stream0,srcbase + offset]); 0: __global{DDR},read 0:3.13% 0:100.0 0: 1836.0MB/s, 100.00%Efficiency
15 write_channel_altera(input_stream1,src[base + N /2 + offset]); 0: __global{DDR} read 0:6.25% 0:100.0% 0: 1836.0MBIs, 100.00%Efficiency
16 write_channel_altera(input_stream2 src[base + N/ 4 + offset]); 0: __global{DDR} read 0:9.37% 0: 100.0% 0: 1836.0MB/s, 100.00%Efficiency
17 write_channel_altera(input_stream3,src[base + 3 * N/ 4 + offsef]); (0. oloballDDR).._ B2 0:12.5% 0: 100.0% 0: 1836.0MB/s, 100.00%Efficiency
b } 0. __global{DDR},read
20 kernel void output_kernel(global TYPE *dest){ 1: channel write I
21 int] = get_global_id(0)* 4; - i
22 dest{] = read_channel_altera(output_stream0); 0: channelread 0:0.0% 0: 100.0% 0: 1837.0MBls th: Average memory bandwidth
23 destfj + 1] = read_channel_altera(output_stream1); (channel read) (0.0%) (100.0%) (1837.0MB/s)
24 destj + 2] = read_channel_altera(output_stream2); (channel read) (0.0%) (100.0%) (1837.0MB/s) urrent memory acCess
25 destfj + 3] = read_channel_altera(output_stream3); (channel read) (0.0%) (100.0%) (1837.0MB/s)
26 }
27
28 . 5
29 kernel void fit1d(int times, int accessMemory) { Eff|C|ency: % Of data acqu”"ed tha'[the
30 /I declare array used for delay elements inside fit
31 TYPE shregiN + 4 * (LOGN - 2); kernel program actually uses
32
33 /I needs to run an extra "N / 4 - 1" iterations to drain the last outputs
24 forfinti—=0-i Firn, OAOOCK 2N ah LA A isall
— = — =

Tooltip available also shows: Cache Hit %, Unaligned Access %, Coalesced, Average Burst Size, and Activity%

Programmable Solutions Group

Profiler Reports — Kernel Execution Tab

= ||[lustrates the execution time of each kernel
Source Code || Kemel Execution | M1 | output_kemel | input_kemel |

>

Device Id Kernel Total Time: 89.89ms

Device 0 ft1d I
Device 0 output_kernel I
Device 0 input_kemel |

= Shows interactions between different kernel executions

= May display memory transfers between the host and devices
— To enable, set the environment variable ACL_PROFILE_TIMER to 1

[‘Source Code | Kemel Execution n:aﬁx;duq
Device Id Kemel Total Time: 396.74ms

Device 0 matriziul FRRRRRRRRRRRRRnnnnnnnnnnnnnnnni
Device 0 Memory Transfers 1 |
Device 1 matrixhul FRRRRERRERR IR nnnnennnnnnnnnn
Device 1 Memory Transfers | |
Device 1 Memory Copy (from device) FORNRRRRRNRRRRRRRRRnnnnnnnnnnn
Device 1 Memory Copy (to device)

Programmable Solutions Group (intel. . 32

Profiler Reports — Kernel Summary Tab

= Reports memory bursts, stalls and bandwidth

= Each kernel has a separate memory tab

Eoard ” Fi

Global Memory Bw (DDR) 25600 MB/s

[Source Code I Kernel Execution T shal_hash_blocks 1

Statistic | Measurad | Optirnal
Wworse Case Stall i__globall % | 51.94% | 0%
Kernel Clock Frequency 243 MHz na
Global BWw (DDR:bankl) 1348.2 MBfs 12200 MBfs
Average Write Burst 16 16
fverage Read Burst 1 15
Global BW (DDR:bank2) 1348.2 MB/s 12300 MB/s
fveraqe Write Burst 18 18
Awerage Read Burst

Programmable Solutions Group (intel. . 33

Matrix Multiplication Design Example

= Demonstrates concepts in this class = Matrix-matrix multiply mathematics

= Located on the website - Alsannxm matrix

S = - — Bis an m x p matrix

s C 0 | & Secure | https//www.altera.com/support/support ddesign ¥ &+ @ B @
A Ap o A By Biz - By

'i@ FPGA LOGIN B MENU = Search Q A Ay Apy -+ Asp B Byn By -+ By,

Intel FPGA and SoC > Support > Support Resource > .. > .. > Matrix Multiplication Design
Example

Ay A o Ay By Bma v+ Bup
— Product (AB) is an n x p matrix
This example contains a high-performance implementation of the fundamental matrix

multiplication operation and demonstrates optimizations that can be described in Open Computing AB AB AB
Language [OpenCL™) to achieve significantly improved performance. On an algorithmic level, the ()11 ()12 e ()1

Matrix Multiplication Design Example

kernel in this example shows how ta describe loop tiling to take advantage of the data reuse

inherent in the computation. B (AB}H (AB)H cee (AB)Zp

This example also demonstrates how to use laop unrolling and SIMD-style compiler optimizations.
to easily increase the performance of the kernel. As part of the example package, the parameters for
each precompiled device binary have been chosen 1o maximize performance on that particular))

board. Additional details are available in the example package that show how easy itis to (AB)“]_ (AB)nz ves (AB)

parameterize the kernel to target different performance and resource requirements

Also, the host application is set up to automatically take advantage of multiple OpenCL devices by
distributing the computation and achieving even more parallelism.

m
" Equation (AB)ifzzA”‘B"f
k=1

2 x BittWare S5-PCle-HQ D8 400

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html

Programmable Solutions Group (intel. . 34

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html

Matrix Multiplication Naive Implementation

= NDRange implementation of (2048x1024) x (1024x1024) matrix multiply

= Each work-item calculates one result in the product matrix

#define WIDTH 1024

void matrixMul (__global float *restrict C,
__global float *restrict A,
__global float *restrict B)

float Csub = 0.0f;

int x = get global id(0); .
ot = gei olelsd adl(i) s Loops across matrix A

/ and down matrix B for
for (int i = 0; i < WIDTH; i++) { each result

Csub += Ay * WIDTH + i] * B[x + WIDTH * i];
}

Cly * WIDTH + x] = Csub;

Programmable Solutions Group (intel. . 35

Matrix Multiplication Naive Implementation

valid_in_0 valid in_1

= One Compute Unit created % %
= 1 multiplication and 1 adder created Deund hisssdd Disasad
= At 400Mhz, would result in 0.8 GFLOPs (@ |_l l_l
— Theoretical maximum computation y v
bandwidth of circuit *I |
'\+)
= And that’s not even the bottleneck \ l
— next slide ?
v

valid_out

Matrix Multiplication (Naive) Profiler Report

= Profiler ran for execution on Stratix® V board

— 11 seconds to execute
— Total amount of data read: 11s x (1,300 MB/s + 7400 MB/s) = 95GB

— Total input size = 3M floats x 4 bytes/float = 12 MB
— Data being accessed repeatedly (~8000x) .

A_localllocal_yl[local_x] = Ala + A_width * local_y + local_x]; 0: _ global{DDR} read |0: 38.86% 0: 60.3% 0: 1299 9MB/=, 59, Qd%Emuency
B_local[local_x][local_y] = B[b + B_width * local_y + local_x]; 0: _ global{DDR} read |0:31.53% 0: 60.3%
b4 A A

P \

= |ssues with initial implementation: High stall, medium occupancy, low efficiency

» Profiling Store: Extremely low occupancy, rarely-used LSU, Don’t Care

i Btore result in matrix C
Clget_global_id(1) * get_global_size(0) + get_global_id(0)] = runni... | (__global{DDR} write) | (7.34%) (0.1%) (1.2MB/s, 66.67%Efciency)

Programmable Solutions Group (intel. . 37

Optimizing ND Range Kernels

Optimizing ND Range Kernel Execution Agenda

= Workgroup Size

Workgroup Characteristics

Work-items within a workgroup can share local data and synchronize

OpenCL™ workgroup size rules

— NDrange must be evenly divisible by workgroup size in each dimension

— Set at kernel launch time by the host 1ocal work size argument inthe
clEnqueueNDRangeKernel call

— All work items from the same workgroup assigned to the same CU at the same time

Optimal workgroup size determined by the hardware

FPGA compute unit workgroup limit can be set by kernel attributes

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group s (7= Y A 1 (|nte| . 40

Specifying Work-Group Size Attributes

Allow AOC to allocate the optimal amount of hardware resources to manage and
synchronize the work-items in a workgroup

— Allows work-group size optimized code
" max work group size (N)

— Specifies the maximum number of work-items in a workgroup
" reqd work group size (X,Y,7Z)

— Specifies the required work-group size

__attribute ((reqd work group size(64,64,1))) __attribute ((max_work group size(256)))
__kernel void mykernel (..) { __kernel void mykernel (..) {

} }

Programmable Solutions Group (intel. . 41

Query Kernel CU Workgroup Requirements

Use clGetKernelWorkGroupInfo to query Kernel CU workgroup size limit
= Use the following param names

— CL_KERNEL WORK_ GROUP_SIZE
— Maximum workgroup size the compute unit supports

— CL_KERNEL_COMPILE_WORK_GROUP_SIZE

— Work-group size specified by kernel attribute reqd work group size (X, Y, Z)
— If none exist, will return (0,0,0)
| Kernel Object |

| Device ID | | param name |

cl::Kernel::getWorkGroupInfo (mydeviceid, CL KERNEL WORK GROUP SIZE,
¶m value)

~

| param value: pointer to return value |

Programmable Solutions Group

Setting Workgroup Size — Host Code Examples

» Recommended to specify the workgroup size when launching kernels on the
Intel® FPGA platform

— Setting local work size to NULL may result in an undesirable workgroup size

//1D Work-Group Example

int err;

size t const globalWorkSize = 1920;

size t const = 8;

err=myqueue .enqueueNDRangeKernel (ldkernel, cl::NullRange, cl::NDRange (globalWorkSize),
) ;

//3D C Work-Group Example
err=myqueue .enqueueNDRangeKernel (3dkernel, cl::NullRange, cl::NDRange (512,512, 6512),
) ;

Programmable Solutions Group (intel. .

Matrix Multiplication Design: Analyze Memory
Access Pattern

= Bottleneck: Memory controller can’t keep up (high stall, medium occupancy)

0. 60.3% 0:1299.9MB/s, 59.94%Efficiency
0: 60.3%
— Problem

— Each input value is accessed repeatedly (~8000x)
— Input data size is 12MB yet we’re reading 95GB of data from global memory

0. __globaDDR} read
0: __globa{DDR} read

0:38.86%

A_localllocal_yllocal_x] = Ala + A_width * local_y + local_x];
0:31.53%

B_local[local_x][local_y] = B[b + B_width * local_y + local_x];

for (int i = 0; i < WIDTH; i++) {
Csub += A[y * WIDTH + 1] * B[x + WIDTH * 1i]; }
Cly * WIDTH + x] = Csub;

= Code analysis: repeated access
— Reads an entire row of A and an entire column of B to calculate each value of C

— Adjacent threads read much of the same data (row from matrix A or a column from
matrix B)

Programmable Solutions Group (intel. . 44

Matrix Multiplication Design: Tiling / Blocking

= Tiling is buffering data onto fast on-chip storage where it will be repeatedly
accessed (caching)

— Very common technique

— Used when multiple threads need to access overlapping parts of data set

= Data must be partitioned into blocks to fit into local memory
— Only work-items within a workgroup can share data
— Local memory size and geometry set at compile time

— Workgroup sizes (block sizes) must be known at compile time

Matrix Multiplication Design: Tiling / Blocking

= Set required workgroup size using attribute

= Set local memory size based on block size

#define BLOCK_SIZE 64
#define WIDTH 1024

kernel attribute ((reqgd work group size (BLOCK SIZE, BLOCK SIZE,

1)))

void matrixMul (_ global float *restrict C, _ global float *restrict A, global float *restrict B) {

__local float A local[BLOCK SIZE] [BLOCK SIZE];
__local float B local[BLOCK SIZE] [BLOCK SIZE];

// Initialize x (gid(0)), y(gid(l)), local x, local y, aBegin, aEnd, aStep, bStep (Hidden)
float Csub = 0.0f; , Loop through elements
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {

A local[local y][local x] = Ala
B local[local y][local x] = B[b
barrier (CLK LOCAL MEM FENCE) ;
for (int k = 0; k < BLOCK SIZE; ++k)
Csub += A local[local y] [k]

barrier (CLK LOCAL MEM FENCE) ;

}

Clget _global id(1)

* WIDTH + get global id(0)] = Csub;

Programmable Solutions Group

+ WIDTH * local y + local x];
+ WIDTH * local y + local x];

* B local[k] [local x];

in a BLOCK to cache
in data

Loop through BLOCK
width to calculate
partial result

Matrix Multiplication Design: Tiling / Blocking

C = A * B
Store C Load A Load B
Vv
On- ch|p Memory On-chip Memory

T

Ac ator

Matrix Multiplication: Block Size vs Performance

- Workgroup Size and |Ocal memory Matrix: (2048 x 1,024) x (1024 x 1024) = (2048 x 1024)

.) _ | .
requirement increases TVIAM ciock sipe | 2™ | Global Reads Kernel Time
Block Size(BS) (floats) (floats) (ms)

1 2 4,294,967,296 11,224
» Global demand and kernel time drops 2 8 2,147,483,648 3,313 (-70%)
with block size 4 32 1,073,741,824 1,683 (-49%)
. . 8 128 536,870,912 900 (-47%
» For block size 64, read data ~23x times CATe)
16 512 268,435,456 438 (-51%)
from global
32 2,048 134,217,728 218 (-50%)
= Eventually problem changes from 64 8,192 67,108,864 151 (-31%)
memory-bound to compute-bound and BS 2+ BS? 2*N3/BS
area-bound

Programmable Solutions Group (intel. . 48

Optimizing ND Range Kernel Execution Agenda

= Loop Unrolling

unroll kernel pragma

#pragma unroll <N> Instructs AOC to attempt to unroll a loop <N> times
— Without <N>, AOC will attempt to unroll the loop fully

— Warning issued if AOC unable to unroll

#pragma unroll 2
for (size t k=0; k<4; kt+) {

mac += data in[(gid*4)+k] * coeff[k];
}

= Control the amount of hardware used for loops
— Trading off between performance and area

— If performance is exceeded, reducing loop unrolling factor can help reduce area
— Force compiler to not unroll by using #pragma unroll 1

Programmable Solutions Group (intel. . 50

Loop Unrolling Example

accum = 0;
= Sum of 4 values for every work-item for (size t 1=0; i<4; iit)
= Store a new result every 4 iterations

accum += data in[(gid*4)+i];

}

sum out [gid] = accum;

accum reg

v »

4 iterations

For Begin Load >

Programmable Solutions Group

intel‘ . 51

Loop Unrolling Example: Unroll 2

= Unroll factor of 2 accum = 0/
Epragma unroll 2
— 2 iterations of the loop performed for every for (size t i=0; i<4; i++)
forward execution {
accum += data in[(gid*4)+i];
= Store a new result every 2 iterations)

sum out [gid] = accum;

accum reg

For Begin Store every

2 iterations

Programmable Solutions Group

(inter . 52

Loop Unrolling Example: Fully Unrolled

accum = 0;
#pragma unroll
for (size t 1=0; i<4; i++)

= Unroll every iteration of the loop

= Store a new result every clock cycle

accum += data in[(gid*4)+i];
}

sum out [gid] = accum;

™ S
e —EEm. 9

every
cycle

Ul

Additional Optimizations Shown:
1. accum register removed
2. Order of operation optimization done if allowed
3. Operators removed if not needed
* There would be 4 adders created if initial value of accum is not 0.

Programmable Solutions Group (intel. . 53

Loop Unrolling in the HTML Report

= Loop unrolling reported in loop analysis section of the HTML report
— <kernel file folder>\reports\report.html

— Alsoin <kernel file>.log /@ o crminie-~ =\

€) @ | file:///home/student/fpga_trn/Opt_OpenCL/cumulative_multiply_solution @ ||Q search wBa ¥ @ =

Reports View reports...~

= Reported information

Loops analysis ¥ Show fully unrolled loops cumulative_multiply_solution.cl rx
14 double mul_copies|8]; @A
Pipelined Il Bottleneck Detalls 15 for (unsigned j=8; J<B; j++) B
. 16 mul_copieslj1<1.0;
Single work-item 17
— Keme: summation {cumulative_multiply_solutionct10) execution, 18 for (unsigned j =8; j < cols*rows; j++)
19+ {
Fully unrolled loop (cumulative_multiply_solutionck15) nfa na na Auto-unrolied ﬁ éé‘“‘;i‘gzri;z{immesmumput“]'
. 22
. . . Fully unrolled loop (cumuiative_multply_solutioncl30) n/a va e Auto-unolled b J/shift register L
— Nesting relationshi v TEEEm
Summation 1 (cumuiative_mutily_solutionc18) Yes 1 2 nul_copies(k] = mul_copieslk-11;
appraximation. 2 mul_copies(e]=cur;
27 1
Fully unrolled loop 28
(cumuative_mutiply_solutioncl24) " e e Auteunelea 29 //Conbine results
30 | for (unsigned j=0; j<8; j++)
— Requestea unroil ractor -
32
33 *output = result;
34 1
35
- 36 |
Achieved unroll factor : -

Details

Fully unrolled loop:
Auto-unrolled

Programmable Solutions Group

Matrix Multiplication : Initial Implementation

for (int k = 0; k < BLOCK SIZE; ++k)
Csub += A local[local y][k] + B locall[k][local x];

valid_in 0 valid in_1

G-

= 1 multiplication and 1 adder created

= Need to try loop unrolling to increase
compute o

Matrix Multiplication: Improved Implementation

#pragma unroll
for (int k = 0; k < BLOCK SIZE; ++k)
Csub += A local[local y][k] + B local[k][local x];

Valid in Coalesced load Coalesced load

. sum || LoadA | LoadA | LoadA | LoadA |/ LoadB | LoadB | LoadB | LoadB |

{i ii | 2 7 v ¥
%

“' &'} k*‘.‘ *
vV V¥

\ o Multiply Accumulate Tree \+ \

Y ¥
w)
| 2R

(D | Newsum
| 4 valid_out

Optimizing ND Range Kernel Execution Agenda

= Kernel Vectorization

Kernel Vectorization

Widen the pipeline to achieve higher throughput

— Allow multiple work-items from the same workgroup to execute in Single Instruction
Multiple Data (SIMD) fashion

» Translate scalar operations into SIMD vectored operations

SIMD Execution

Load Load Load Load
ali] bli] a[i]...afi+n] b[i]..b[i+n]
afi]+bli] a[i]+bli] L. afi+n]+b[i+n]
v \ v
Store Store
cli] c[i]...c[i+n]

Programmable Solutions Group (intel. . 58

Vectorize Kernel Code Manually

» Replicate operations in the kernel manually

— Must also adjust NDRange in host application

__kernel void mykernel (..)

{

size t gid = get global id(0); Original
result[gid] = in algid] + in b[gid]; Kernel

}

___kernel void mykernel (..)

{
size t gid = get global id(0);
result[gid*4+0] = a[gid*4+0] + b[gid*4+0]; Manually
result[gid*4+1] algid*4+1] + blgid*4+1]; Vectorized
result[gid*4+2] = al[gid*4+2] + bl[gid*4+2]; Kernel
result[gid*4+3] = a[gid*4+3] + bl[gid*4+3];

Programmable Solutions Group

intel‘ .)

Vectorize Kernel - Memory Coalescing

Vectorize a kernel using OpenCL™ vectored data types

» Elements of vectored data types always in consecutive memory locations
— e.g. float4, int8, etc

— Accesses can be coalesced (Wider accesses results in fewer accesses)

__kernel void mykernel (.
__global const |float4| * restrict in a,
__global const |float4| * restrict in b,

__global |floaté4| * restrict result)

size t gid = get global id(0); result[gid].x = in _af[gid].x + in b[gid].x;
[Fesult[gid] = in algid] + in blgidl; | — result[gid].y = in algid].y + in b[gid].y;

} — result[gid].z = in af[gid].z + in b[gid].z;
result[gid].w = in af[gid].w + in b[gid].w;

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group s (7= Y d A . A FRMESE ! |nte| . 60

Automatic Kernel Vectorization

Use attribute to enable automatic kernel compute unit vectorization
— Without modifying the kernel body
— Memory accesses automatically coalesced

— No need to adjust NDRange in host application

= num simd work items attribute

— Specify the SIMD factor (# of work-items in the same workgroup executed in parallel)
— Hardware operators automatically vectorized
— Vectorization takes affect in the X dimension of the workgroup

__attribute ((num_simd work items(4)))
__attribute_ ((reqd work group size(64,1,1)))
kernel void mykernel (..)

Programmable Solutions Group (intel. . 61

Automatic SIMD Vectorization Limitations

= num simd work items mustbe 2, 4,8, or 16

= reqd work group size mustbe evenly divisible by
num simd work items Iinthe X dimension

= If a control path depends on get global idorget local id, that branch
will not be vectorized

— The rest of the kernel will be

= Use manual vectorization or kernel replication (next section) in these situations

Matrix Multiplication: SIMD Vectorization w/Unrolling

Dynamic Profiler Results

. SIMD_WORK_ITEMS
#define BLOCK SIZE 64

#define WIDTH 1024 1 151
__kernel attribute((reqd work group size (BLOCK SIZE, BLOCK SIZE, 1)))
__attribute((num_simd work_items (SIMD WORK_ITEMS))) 2 63
void matrixMul (_ global float *restrict C, = global float *restrict A,
__global float *restrict B) 4 53

{

__local float A local [BLOCK SIZE] [BLOCK SIZE]; Original design time:

__local float B local[BLOCK SIZE] [BLOCK SIZE]; 11224 ms
// Initialize x(gid(0)), y(gid(1l)), local x, local y, aBegin, aEnd, aStep, bStep (Hidden)

float Csub = 0.0f;

for (int a = aBegin, b = bBegin; a <= akEnd; a += aStep, b += bStep) {
A local[local yl[local x] = Ala + WIDTH * local y + local x];
B local[local y][local x] = B[b + WIDTH * local y + local x];
barrier (CLK_LOCAL MEM FENCE) ;
#fpragma unroll
for (int k = 0; k < BLOCK SIZE; ++k)

Csub += A local[local y][k] * B local[k][local x];

barrier (CLK_LOCAL MEM FENCE) ;

}

Clget global id(1l) * WIDTH + get global id(0)] = Csub;

Programmable Solutions Group (intel. . 63

Dynamic Profiler
Benefits of Tiling, SIMD, and Loop Unrolling

Naive Kernel: BLOCK SIZE=1, SIMD=1, No Unrolling, Time = 11,224 ms Q

A_localllocal_yl[local_x] = Ala + A_width * local_y + local_x]; 0. __globaliDDRYread |0 35.86% 0: 60.3% 0: 1299 9MB/'s, 59 94%Efficiency
B_local[local_x][local_y] = B[b + B_width * local_y + local_x]; 0. __globaliDDRYread |0 31.53% 0: 60.3%
Improved Kernel: BLOCK_SIZE=64, SIMD=4, Loop Unrolled, Time = 53ms

ITOUT 15 SAOWT NETe o7 Musiraton purposes.
A_localllocal_yl[local_x] = Ala + A_width * local_y + local_x]; 0. __globaiDDR}read |0 23.43% 0:61.6% 0. 2520 6MB/s, 100.00%Eficiency
B_localllocal_x][local_y] = B[b + B_width * local_y + local_x]; 0. __global{iDDR}read |0 2547% 0: 61.6% 0: 2520 6MB/s, 100.00%Eficiency

= Conclusion (212x Performance Improvement)

— Stall / Occupancy are similar, memory efficiency improved

— SIMD Vectorization and BLOCKING improves memory access efficiency while reducing global
memory access requirement

— SIMD Vectorization and Loop Unrolling improves computational bandwidth

— Know your algorithm! Think about your algorithm before low-level system issues

Programmable Solutions Group (intel. . 64

Optimizing ND Range Kernel Execution Agenda

= Kernel Compute Unit Replication

Default Compute Unit Created

= Only one compute unit per kernel created by default

= Workgroups distributed to compute unit in sequence

Host Memory

T WIKLRL)

Host

(]

Q

o]

o}
Global =
Memory

wal| K1 |[R1]

N

| Elapsed Time >

Programmable Solutions Group (intel, ~ 66

Multiple Compute Units

= num compute unit Kernel attribute specifies number of CUs to generate

— num _compute units (N) Or num compute units(X,Y, 7Z)
— N or X*Y*Z compute units created

— Entire compute unit including all local memory, control logic, and operators replicated
— Each compute unit functionally identical

— Kernel usage not limited, limited only by FPGA resource

= \Workgroups from the same NDRange kernel launch are distributed to available
compute units and processed in parallel

— Need at least three times as workgroups as compute units to effectively utilize all

hardware
__attribute ((num_compute units(3)))

__kernel void ..

Programmable Solutions Group (intel. . 67

O -
D D
Q. :
< .
O °
- :
u_ =
+ i
- 2
p ©
=
O
c_
=
=
C

kernel void ..

=
5]
=
5]
=
@
o
ac

EREINET]

Elapsed Time

Programmable Solutions Group

Memory Considerations - CU Replication vs. SIMD

num compute units num simd work items
» |ncreases number of global memory » Increases width of global memory
accesses accesses
= May lead to poor access patterns » Coalescing of memory accesses
— Random accesses — Wide accesses .
— Possible contention — Burst accesses

Global Memory Global Memory

Kernel CU1 Kernel CU2 X2 SIMD Kernel CU

Programmable Solutions Group (intel. . 69

Compute Unit Replication vs. SIMD Vectorization

= Try SIMD vectorization first

— Usually leads to more efficient hardware than compute unit replication

= May combining SIMD vectorization with computer unit replication
— Possibly required to achieve best performance and/or fit
— 4 copies of 4-lane-wide CUs may or may not be better than 2 8-lane-wide CUs

num compute units num simd work items

Designed to increase throughput by increasing kernel hardware

Increase # of compute unis where Increases the # of work-items from the same
workgroups can be scheduled workgroup to be processed in parallel in a CU
Entire CU including control logic replicated Kernel control logic shared across each SIMD
(more resource usage) vector lane
Usage only limited by FPGA resources Kernel code and resource restrictions

Programmable Solutions Group (intel. . 70

Example: Combining Replication and Vectorization

= Resource estimates of 16 SIMD lanes indicate “no fit”
» Resource estimates of 8 SIMD lanes suggest 12 lanes may fit
— Automatic vectorization only supports 2, 4, 8 and 16 lane configurations

= Generate 12 lanes by combining num simd work items and
num compute units

___attribute ((num_ simd work items (4)))

__attribute ((num_compute units(3)))

__attribute ((regd work group size(8,8,1)))
kernel void mykernel (..) {

Global Memory

Lozak Stores ——— Stores —— Stores

X4 SIMD Kernel CU1 X4 SIMD Kernel CU2 X4 SIMD Kernel CU3

Programmable Solutions Group

Exercise 4
Optimizing an NDRange Kernel

Single Work-ltem Execution

Single Work-Item Execution Agenda

Introduction

Understanding execution models and optimization reports

Resolving common dependency issues

Advanced Uses

— EXxercise 2

Single Work-Item Execution

Launching kernels with global size of (1,1,1)
— Akernel executed on a compute unit with exactly one work-item

— Oruse cl::CommandQueue: :enqueueTask

Defined as a Task in OpenCL™

Single work-item kernels almost always have an outer loop

— Loops in kernels automatically parallelized by the Intel® FPGA OpenCL Offline
Compiler

— Entire kernel gets pipeline parallelized!

Intel FPGA specific feature that wouldn’t run well on other architectures

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group sy (7= O A . A FRMESE ! |nte| . 75

Single-Threaded Kernels Motivation

Data parallelism isn’t always easy to extract

NDRange execution may not be suitable for certain situations
— Difficulties partitioning data into workgroups

— Streaming application where data cannot arrive in parallel

Some algorithms that are inherently sequential and depend on previous results

— E.g. FIR filters, compression algorithms

Sequential programming model of tasks more similar to C programming

— Certain usage scenario more suited for sequential programming model

— Easier to port

Data Parallelization Review

OpenCL™ NDRange execution best suited for applications where each loop
iteration is independent

Algorithm
for (int i=0; i < n; i++) FPGA Acceleration through
answer[i] = a[i] + b[i]; Pipelined Execution

—_

OpenCL™ |mplementation

__kernel void sum(__global const float *a,
__global const float *b,
__global float *answer)

int xid = get global id(0);
answer [xid] = a[xid] + b[xid];

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos A E
Programmable Solutions Group s (7= 4 d A . A FRMESE ! |nte| . 77

Tasks and Loop-pipelining

= NDRange Kernels can’t handle dependencies across work-items
well

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];
}

= Solution: Tasks

Compiler will infer pipelined parallel execution across loop iterations
Efficiently execute multiple loop iterations
Dependencies resolved by the compiler

Values transferred between loop iterations with FPGA resources
— No need to buffer up data

Programmable Solutions Group

B=-=

&

Store

Loop Pipelining vs Serial Execution

Loop pipelining: Launch loop iterations as soon as dependency is resolved

= [nitiation interval(ll): launch frequency (in cycles) of a new loop iteration

— 1I=1 is optimally pipelined
— No dependency or dependencies can be resolved in 1 cycle

v

i3

Serial Execution of
Loop Iterations

suonela)| doo

10 uonnoax3 pauladid

Programmable Solutions Group

Loop Pipelining

AOC will pipeline each iteration of the loop for acceleration
= Analyze any dependencies between iterations
= Schedule these operations and make copies of hardware if needed

= Launch the next iteration as soon as possible

float array[M];
for (int i=0; 1 < n; i++)
{

At this point, launch

€ the next iteration of
for (int j=0; 3 < M; J++) . outer loo
answer[i] += array[j] * coefs[j]; Reduction on array P
} (Not a dependency) (Copies of shift registers

made automatically)

Programmable Solutions Group (intel' . 80

Loop Pipelining Example
No Loop Pipelining With Loop Pipelining

Looks like multi-

10
il
I 2
I 3
i4 threaded
I I i execution!

Clock Cycles

Clock Cycles
N

v I v

No Overlap of Iterations! Finishes Faster because lterations
P ' Are Overlapped

intel‘ . 81

Programmable Solutions Group

Parallel Threads vs Loop Pipelining

NDRange Parallel Threads Loop Pipelining

If loop dependency
Parallel threads launch 1 resolved in 1 clock

10
i1
thread per clock cycle in I 3 / cycle
I I i4
I I 5

t0
t1
t2
I 3) pipelined fashion
I i

= Loop Pipelining enables Pipeline Parallelism AND the communication of state
information between iterations.

— If dependency resolved in 1 clock cycle, then the throughput is the same

— Data dependency resolved without adding extra compute time!

Programmable Solutions Group (intel. . 82

Loop Unrolling in Time vs Pipelining

Time

Thread Stage 1l | Stage2 | Stage3
1 - Stage 1 Stage 2 Stage 3

2
Thread Siane | SELEW ﬂmr*). o Loop
3 F *F 4F Iterations

Time

Programmable Solutions Group (intel. . 83

Single Work-Item vs. NDRange Kernels

One approach is not better than the other, can have both types of kernels in the same
application
= Create single work-item kernels if

— Data processing sequencing is critical

— Algorithm can’t easily break down into work-items due to data dependencies

— Not all data available prior to kernel launch

— Data cannot be easily partitioned into workgroups

= Create NDRange kernels if
— Kernel does not have loop and memory dependencies

— Kernel can execute multiple work-items in parallel efficiently
— Able to take advantage of SIMD processing

Programmable Solutions Group (intel. . 84

Recognition of Single Work-ltem Kernels

AOC assumes single work-item kernels if kernel code does not query any work-
item information

= Noget global id(), get local id(), or get group id() calls

= Enables AOC to automatically perform loop pipelining and memory
dependence analysis on the kernel

= Many C-based algorithms can directly compile to an OpenCL™ Task

__kernel void mykernel (..) {
for (i=0; i< FEFT POINTS; i++) |

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Launching Single Work-ltem Kernels (Tasks)

= Single work item kernels assumed when there are no get global id(),
get local id(), or get group id() calls

» Use cl::CommandQueue: :enqueueNDRangeKernel with
global work sizeand local work sizesettol

= Orcl::CommandQueue: :enqueueTask in host code

setup memory buffers();
transfer data to fpgal():;

myqueue . enqueueTask (mykernel, ..);

read data from fpga();

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

intel‘ . 86

Programmable Solutions Group

Single Work-Item Execution Agenda

» Understanding execution models and optimization reports

Loop Analysis for Single Work-ltem Kernels

= Automatically Generated

Modify kernel.cl

= Reports status of loop pipelining

= Displays dependency information

= Part of HTML Report
— <kernel file folder>\reports\report.html

HTML Report
Loop Report

= Also part of the log file
— <kernel file folder>\<kernel file>.log [

Programmable Solutions Group

intel‘ . 88

Loop Pipelining Optimization Report

Report shows pipeline status of each single-work item kernel loop

= [nitiation Interval (1) = launch frequency of loop iterations

— Cycles between loop iteration launches

= Minimizing Il is the key to single work-item performance optimization

» Report shows

— If loops are pipelined

— Initiation interval of pipelined loops
— Ideal lI=1

Loop Pipeline Single Loop Execution

Basic case — single loop

kernel void test () {
for (i=0; 1i<N; i++) {

}

L : Latency of the loop
(clock cycles or pipeline stages)

K: Constant value

Programmable Solutions Group (intel. . 90

Loop Pipeline Single Loop Execution

Iteration
executing
in Datapath

Basic case — single loop

kernel void test () {
for (i1i=0; i<N; i++) {

}

Loop Analysis Report: 11=1 O

With Il = 1, iterations launched every clock cycle one after another

Programmable Solutions Group (intel. . 91

Loop Pipeline Single Loop Execution

Basic case — single loop

kernel void test () {
for (1=0; i<N; i++) {

}

}

= Total number of clock cycle to run kernel is about N + K
— Ktypically in the order of 100s of clock cycles
— N: Iterations based on data, usually orders of magnitudes larger than K

— So: Number of total clock cycles = N

— Throughput can be estimated without actually running the kernel!

Single Loop with Complex Dependencies

= || > 1, caused by complex data or memory dependencies

— Dependencies not resolved in 1 cycle
6 cycles later, next

iteration enter the

kernel void test () { loop body
for (..) {

Loop Analysis Report: 11=6 @

= Total number of cycles to run is about N*6 + K = 6*N

Single Loop with Complex Dependencies

>1

Hardware created to stall the pipeline until dependency is
resolved

kernel void test () {
for (..) {
Alx] = Aly];

}
}

Total number of cycles to run kernel is about N*II + K =|II*"N

Key to single work-item kernel throughput is reducing Il

— Minimize stalls

Memory Dependency

Loop-carried dependency where a memory operation cannot occur before
dependent memory operation from a previous iteration

+ Loop "for.body8" (file test.cl line 138)
Pipelined with successive iterations launched every 7 cycles due to:

(;;) Memory dependency on Load Operation from: |[(file test.cl line 140)
Store Operation (file test.cl line 140)

Largest Critical Path Contributors:
73%: Load Operation (file test.cl line 140)
26%: Store Operation (file test.cl line 140)

= Largest Critical Path Contributor
— Specifies the operations that contribute to the delay

Programmable Solutions Group (intel. . 95

Data Dependency

Loop-carried dependency where a variable is dependent on the result from a
computation in the previous iteration

+ Loop "for.body" (file float.cl line 5}
Pipelined with successive iterations launched every 9 cycles due to:

oo
(:) Data dependency on variable sum |(file float.cl line &)
Largest Critical Path Contributor:

96%: Fadd Operation (file float.cl line &)

= Largest Critical Path Contributor
— Specifies the operations that contribute to the delay

intel‘ . 96

Programmable Solutions Group

Loop Pipeline with Nested Loops

“Critical Loop” determines performance, non-critical loops can have poor Il

kernel void test () {
while (i < M) {

Outer Loop

for (j=0; J<N; Jj++) {
Loop Analysis Report:
Outer Loop: Pipelined, Il >=2 : Inner Loop
Inner Loop: Pipelined, 11=1 =1

Total run = M*(N*l)\+ K+J

Critical Loop Il

Programmable Solutions Group

Loop Pipeline with Nested Loops

“Critical Loop” determines performance, non-critical loops can have poor Il

kernel void test () {
while (i<M) { Outer Loop
11=2
for (3=0;3<N;Jj++) {
= Quter loop iterations now blocked because
inner loop is busy Inner Loop
e =1
= || on outer loop doesn’t impact performance

= Quter loop Il only an issue if

— N *Il_inner_loop < II_outer_loop

Programmable Solutions Group

intel‘ . 98

Loop Pipeline with Nested Loops

Which loop is the critical loop?

kernel void test () {

while (i<M) { Loop Analysis Report:

for (j=0; j<N; j++) {

M loop: Il >= 1
} N loop: 1I=1
for (j=0; j<P; j++) {
P loop: I1=8

}
}
}

= Depends on the value of N and P

» If P is much smaller than N, Il for P loop doesn’t matter
- IfP*8 <N

Programmable Solutions Group

Interleaving of Outer Iterations in the Inner Loop

= WWhen Inner Loop II>1 and inner loop is not a serial region (discussed later)

for (.) { : ‘ 3 i Outer Loop
i 2 1>=1
for (..) {

Inner Loop
=2

Out-of-Order Loop Execution

Nested loops where the number of iterations of the inner loop varies among outer
loop iterations

= Quter loop iteration could become out-of-order

do { i=0:2
SADsMB (refBuf, MB, ..);
=1:1
if (check(MB)) { i=0:1
MV _done = true; ”
} i=1:0
__bwhile (IMV done); _ ol i=0:0
I loop

iterations

Programmable Solutions Group (intel' . 101

Out-of-Order Loop Iterations

for (i=0; i < N; i++)
for (3=0;13 < N-i|; J++){

: }
= Common coding style)

= Compiler analyzes impact of out-of-order iterations on functionality
— Check for independence of iterations

— Loop pipelining still inferred if functionality not affected

= |f out-of-order iterations may lead to incorrect result
— Loop NOT pipelined

E——— Out-of-order
loop
+ Loop "for.condl.preheader" (file test.cl line 38) . .
| NOT pipelined due to: Iterations
I
. | Loop iteration ordering: iterations may get out of order with respect to the |:0
| listed inner loop, as the number of iterations of the listed inner loop may be
| different for different iterations of this loop. i=1
| Loop "for.body3" (file test.cl line 39)

Programmable Solutions Group

ﬂnmﬂ .1m

Serial Region Execution

= Serial region can occur with nested loops

— An inner loop access causing an outer
loop dependency

— Inner loop becomes a serial region in the
outer loop iteration

kernel void test () {
int a[l1024];

while (i<M) { Access to a can not
for (j=0; Jj<N; j++) be made until
al[X] = b[X]; <€ previous
process(a) ; have
} completed

Programmable Solutions Group

Optimization Report
Outer Loop: Il =2
Serial execution around: Inner Loop

Inner Loop: II=1

©

Iteration 1 cannot
enter inner loop
because itis a
serial region

Iteration 1 enters
inner loop after all
iteration O inner
iterations have
exited

ﬁnmo .1%

Serial Regions

Significant issue if inner loop 11>1

Not an issue if inner loop trip count is high relative to latency of inner loop

Il of both inner and outer loops not affected

Optimization report will state data or memory dependency causing the serial region

| Iterations executed serially jacross the region listed below.

| Only a single loop iteration will execute inside the listed region.

| This will cause performance deqgradation unless the region is pipelined well
(;;) | {can process an iteration every cycle}.

I

I

I

I

Loop "Block2" {file singlethreaded.cl line 18)
due to:
Data dependency on variable

Programmable Solutions Group (inteI' . 104

Single Work-Item Execution Agenda

» Resolving common dependency issues

Minimize Pipeline Stalls

(N\

Modify kernel.cl
. ‘ Improve the performance of single work-item kernels

(Y by addressing loop-carried dependencies

. /

= Techniques

-

HTML Report — Remove dependency
Loop Analysis _
— Relaxing dependency
N J — Simplifying dependency
(] — Transferring dependency to local memory
. — Remove dependency using a pragma

Removing Loop-Carried Dependency (Unoptimized)

= Quter loop launches every cycles

— Not the critical loop

= Each inner iteration requires sum from the

previous outer iteration

— Becomes

= Inner loop pipelined well!

Programmable Solutions Group

©

int sum = 0;
for (unsigned i=0; i<N; i++) {
for (unsigned j=0; J<N; Jj++) {
sum += A[i*N+7j];
}

sum += B[1];

*** Loop Analysis Report ***

Loop “Blockl”:
Pipelined with II>=1
Serial Region across Loop “Block2”
due to dependency on variable sum

Loop “Block2”:
Pipelined with II=1

Removing Loop-Carried Dependency (Optimized)

To remove the dependency and thus serial region o S(Eﬁsjgﬁ;d 20 N iie)
int sum2 = 0;
= Accumulate using local variable for inner loop for (unsigned 3=0; J<N; j++) |
sum2 += A[i*N+j];
(sum2) :
sum += sum2;
— Instead of using the same sum as outer loop sum += B[i];

= Add the local sum2 to sum at the end of each
outer iteration *** Loop Analysis Report **x

Loop “Blockl”:
Pipelined with II>=1

Loop “Block2”:
Pipelined with II=1

Programmable Solutions Group (intel' . 108

Relaxing Loop-Carried Dependency (Unoptimized)

= Floating point multiply here takes 6 cycles lont mul = 105

— Data dependency on mul every cycle means Il for (unsigned 1 = 0

needs to be 6 mul = mul * A[i];
}

; 1 < N; 1++4)

= Strategy: Increase the distance of the
dependency to be more than 1 iteration

| *** Loop Analysis Report ***

Loop “Blockl”
Pipelined, II=6 due to Data

dependency on variable mul
Largest Critical Path Contributor:

100%: Fmul Operation

Programmable Solutions Group (intel' . 109

Relaxing Loop-Carried Dependency (Optimized)
Front mut < 1,06

= Relax the dependency over M iterations to float mul_copies[Mli .
] for (unsigned i = 0; i < M; i++)
match latency of dependent operation /7 mul_copies[i] = 1.0f;
for (

unsigned i = 0; i < N; i++) {

» Instead of 1 result variable, use M copies float cur = mul copies[M-1]%A[i];

- Number of copies depend on the initial Il #pragma unroll
for (unsigned j = M-1; j >0; j--)

mul copies[j] = mul copies[j-1];
mul copies[0] = cur;

— M copies implemented as shift register

= Top copy used in multiplication)

#pragma unroll

= Shift values

— Result goes to the bottom of shift register

*** Loop Analysis Report ***

. . Loop “Block 1”7 O
#pragma unroll signals compiler to flatten the loop structure . . _
. . . Pipelined. II=1
and execute all iterations of the loop in one feed forward path

Programmable Solutions Group

Relaxing Loop-Carried Dependency (Optimized)

mul_copies[5]

mul_copies[4]

mul_copies|3]

mul_copies|2]

mul_copies|[1]

mul mul_copies|0]

Programmable Solutions Group

Result of multiply
won’t be used for
6 cycles

float mul = 1.0f;

float mul_copies[M];

for (unsigned i = 0; i < M; i++)
mul copies[i] = 1.0f;

for (unsigned i = 0; 1 < N; i++) {
float cur = mul copies[M-1]*A[i];

#pragma unroll
for (unsigned j = M-1; j >0; j-—-)

mul copies[j] = mul copies[j-1];
mul copies[0] = cur;

}

#pragma unroll

*** TLoop Analysis Report ***

Loop “Block 1” .

Pipelined. II=1

Transferring Loop-Carried Dependency to Local
Memory (Unoptimized)

System memory accesses may have long latencies, move dependencies to local

memory
component void mycomp (int* restrict A) {
for (unsigned i = 1; i < N; i++)
. A[N-1i] = A[i];
= Example: |

— Dependency on Global variable A

*** Loop Optimization Report ***

Loop “Blockl”: @
Pipelined with II >= <some value>

Due to Stallable Load Operation

Programmable Solutions Group (intel' . 112

Transferring Loop-Carried Dependency to Local
Memory (Optimized) component void mycomp (int* restrict A) {

int B[N];

Solution: Move array A[i] from system to =e (mmelace & > B & < i)
local memor - ’
y for (unsigned i = 1; i < N; i++)
— Copy global A[] to local BJ] BIN-i] = B[i];
— Execute the loop on local array BJi] for (uzzfiifnfdg[ii]:. 0; 1 < N; i++)

— Copy local B[] back to global A[]

***x Loop Optimization Report ***

= Dependency now on local array BJ]

. . . l:oop “Blockl” O
— Successive iterations launched every Pipelined. II=1
CyCIeS Loop “Block2”:

Pipelined with II = 1

Loop “Block3”:
Pipelined. II=1

Programmable Solutions Group (intel' . 113

Removing Memory Access Loop-Carried
Dependency

» ivdep pragma asserts memory array accesses will not cause dependencies
— Apply to loops
— Removes constraints from otherwise dependent load and store instructions
— Appliesto private, local, and global arrays and pointers

— Reduces logic utilization and lowers the Il value

— User responsible for functionality! #pragma ivdep
for (unsigned 1 = 1; i < N; i++)
= Example Ali] = A[i - X[i]];

’

— X[i] unknown at compile time, compiler assumes dependency across iterations

— With #pragma ivdep, compiler assumes accesses to memory in this loop will not
cause dependencies

Programmable Solutions Group (intel' . 114

ivdep Pragma

" #pragma ivdep

— Dependencies ignored for all accesses to memory arrays

#pragma ivdep
for (unsigned i = 1; i < N;

}

Ali]
B[i]

Ali - X[1i]];
Bl1 - Y[1]];

i++)

{

Dependency ignored for A and B array

" ¥pragma 1vdep array(array name)

— Dependency ignored for only array name accesses

#pragma ivdep array (A)

for (unsigned i = 1; i < N;
A[i] = A[1 - X[i]];
B[i] = B[1i - Y[i]l];

Programmable Solutions Group

i++)

{

Dependency ignored for A array
Dependency for B still enforced

intel‘ . 115

ivdep Pragma Advanced Uses

» jvdep and structs
#fpragma ivdep array(S.A)

for (unsigned i = 0; i < N; i++4) No dependencies for array A inside struct S
S.A[1i] = S.A[i-X[1]];

#fpragma ivdep array (S->A)

for (unsigned i = 0; i < N; i++) No dependencies for A inside the struct pointed to by S
S->A[i] = S->A[i-X[1]]

» ivdep applies to all arrays that may alias with specified pointer

int *ptr = select ? A : B;
#pragma ivdep array (ptr)

for (unsigned i = 0; 1 < N; i++){ No dependencies for A and B array
A[i] = A[1 - X[1]];
B[i] = B[1i - Y[i]];

Programmable Solutions Group

intel‘ . 116

Convert Nested Loops into Single Loop

Combine nested loops to save resources and improve performance

= Consider using the 1loop coalesce pragma

for (i=0; i<N; i++) Converted Single Loop

{ for(1=0; i< N*M; i++)
//statements (
for (3=0; j<M; J++)

{)
//statements

}

//Statements

* Nested loops have more logic and latency than a coalesced loop

Programmable Solutions Group (intel' . 117

loop coalesce Pragma

Directs compiler to coalesce nested loops into a single loop

= Helps reduce overhead needed for loops

— Reduces area and latency of component

= |n certain cases may lengthen critical loop Il

NestiniLeveI

emsiens leer Eemileses #pragma loop coalesce 2
for (..) { -

£ for (A)

or (..) { for (B)

for (C)

) for (D)

}
Compiler attempts to coalesce all nested loops Compiler attempts to coalesce only loops A, B, and D

Programmable Solutions Group

intel‘ . 118

Single Work-Item Execution Agenda

= Advanced uses

Reducing Kernel Hardware Overhead with
max global work dim(0)
= Single Work-Item Kernels are not dispatched across work-items/workgroups

= Kernel attribute max global work dim(0) removes dispatch HW logic

— Saves resources

— Removes logic that generate threads IDs for specified kernel Host link
HW
— global ID, local ID, group ID
— Other number of dimensions values are allowed (up to 3)
— But result in no resource savings
__attribute ((max_global work dim(0))) NY
kernel void mykernel (..) { Kernel CU

for (..

max global work dim(0) Recommendation

Recommended to be used for ALL single work-item kernels (Tasks)

— Compiler does not perform this by default in order to conform to OpenCL™
standards

» Once set, multi-threaded (more than 1 work-item) launch of the kernels will
result in error

»= Once set, overhead omission reflected for the kernel in the HTML Area Report

—rFuretiorroverhesdt 578 685 & & teermetdispateiriogie:
[+] BlockO (Logic: 1%) 4727 (1%) 6841 (1%) 72 (3%) 0 (0%)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos '/3
Q! 121

Kernels That Runs Without the host

Mark kernels that runs automatically without the host with autorun attribute

__attribute ((autorun)))

= Starts kernel execution automatically once FPGA is configured without the host

— Restarts automatically if it finishes execution

= Saves resources
— Omits logic used for communication with the host

— Omits logic that dispatches work-items (ID generators)

Kernel CU

autorun Kernel Requirements

Must use either the max global work dim(0) or
reqd work group size(X,Y,Zz) attribute

— Fixed number of threads launched every time

Must not have any argument __attribute ((max global work dim(O0)))

— No communication with the host __attribute__ ((autorun))
void kernel mykernel ()

I/O channels not supported
— Cannot guarantee data is not dropped at startup

— Kernel-to-kernel channels allowed

Typically for kernels that processes data from channels and write to channels

intel‘ . 123

Creating an Array of Compute Units

Replicate kernel hardware with num compute units (X,Y, Z) attribute
))

= Creates X*Y*Z copies of kernel pipeline cu] cu]

— Increases throughput o J cu J

— For NDRange kernels, CU’s are used to execute multiple workgroups in parallel
— More on this in the Optimizing NDRange kernels section

— Consumes X*Y*Z times more resources for that kernel compute unit

= With single work-item kernels, AOC allows customization of kernel compute
units using the get compute id() function

— Create compute ID dependent logic

get_compute_id() Function Usage

= Each replicated compute unit assigned a compute 1D

= get compute id(dim) call retrieves the unique index of each compute unit
in the specified dimension during compilation

— Compute IDs are static values —dim: 0=X,1=Y,2=Z7
= autorun andmax global work dim(0) attributes required!
= Alternative to replicating the kernel source code and specializing for each copy

= Allows compiler to generates unique hardware for each compute unit
— e.0.1f (get compute id(0) == X) then do something

— Often used to customize computations or control flow

Example with get compute id

Using compute ID to determine channel usage

channel float4 ch PE row[3][4];

channel float4 ch PE col[4][3]; =P PE]’ PE]‘ PE]’ PE
channel float4 ch PE row_side[4]; 3 5 A - A b A b A 4
channel float4 ch PE col side([4]; ((4 a)

- - - =»| PE PE PE PE
___attribute ((autorun)) 2 . . * .

__attribute ((max global work dim(0))) = PE PE PE]) PE
__attribute (()) 1 - \ \ L)
kernel VOld E() { _)f 4 . L , 4 , 4)
float4 a,b; \ PE])& PE \ PE])\ PE !

if ==0) //First PE of row U Y 7'y A 7'y

a = read channel (ch_PE_col_side[col]); 0 1 2 3

else
a = read channel (ch PE col[row-1][col]); 9 a 99

Channels/Pipes
iE —=0) Kernel CU

Programmable Solutions Group (intel' . 126

Systolic Array Motivation

= Key to peak device performance
— Highest possible frequency / Keep FPGA resource busy

= Approach 1: Single large kernel
— “CPU coding style”, difficult to generate efficient HW

= Approach 2: Utilize small kernels
— Easier to optimize and generate efficient HW
— Then replicate kernels
— “FPGA coding style”, Divider-and-conquer
— Call each of these Processing Elements Kernels (PE)

Programmable Solutions Group

1 TFLOPs

Kernel?

Convolutional Neural Network (CNN) Example

FKeedeIr }E)ralnl Ping Pong Buffer: Output
erne erne of one stage becomes
* ¢ — the input of the
Input/Output Buffers / subsequent stage
1121311121311 12)311}121)3
/ alslelalslslalslelals]s \
PE™ PE™ PE™ PE™ PE ™ PE ™ PE Processing Element
14 24 3 1121 3 2 1123 112} 3 .== .
St 11 Tt e A Tele T Convolution Operation
7_8h9 7 8 9 8|9 71819 7_ E_i 9‘\
Filter Buffer

Programmable Solutions Group (intel' . 128

Matrix Multiply in OpenCL™ — Small 4x4 variant

. feeder ‘)(PE \9(PE })r PE f PE \
= 2D Systolic Array A e © AV
— Each PE a dot product feeder #| PE PE f PE \9(PE \
— DSP blocks chained together M - 7'“(- ili\k
Reaul 000l feeder " PE [PE [® PE f» PE
= Regular array topology - /X /N /N /
rer ey op A Ay Ay AV Ay
) feeder PE [PE [PE [PE

A AT AT AT AT

boad Al | recder =» feeder =P feeder =P feeder

LoadBﬂ W 7 W Vv
_Drain Ce. rain <« drain <€ drain < drain

$ DDR

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group sy (7= O A . A FRMESE ! |nte| . 129

Exercise 2
Relax Data Dependencies

Reducing Communication Latency
with Pipes/Channels

Traditional OpenCL™: Host-Centric Architecture
All communication to/from kernels done through global memory

Host CPU

Accelerator

User User
Kernel Kernel
Cu Cu

Programmable Solutions Group

ldea: Communication without Global Memory
'ﬁ[Host CPU

Accelerator

User
Kernel
Cu

User
Kernel
CuU

= Kernel-to-kernel communication done directly on-chip using FIFOs

= |O-to-kernel communication done without the host

» Enabled through Intel FPGA Channels / OpenCL Pipes

Channels / Pipe Features

Kernel CU Kernel CU
| | o | J U
= Provides FIFO-like communication mechanism Wite | CE;?eI 5[Read
4 4

Each call site is unidirectional

Allows BSP-specific I/O communication with kernel compute units

Advantages
— Leverage internal bandwidth of the FPGA
— Auvoid the bottleneck of using off-chip memory

— Reduces overall latency by allowing concurrent Kernel execution

— Reduce storage requirements when data is consumed as it is produced

Kernel-to-Kernel Channel Performance Gains

= Standard

— If communication between kernels is required, host forced to launches kernels
sequentially
— Kernel 1 writes to global memory, kernel 2 reads from global memory

| Kernel 1 | Kernel 2

= With channels

— Host can launch kernels in parallel
— kernel 1 writes to channel as kernel 2 reads from it

Kernel 1

Channel Access

Kernel 2

Programmable Solutions Group (intel' . 135

|O Channel Performance Gains

= Standard

— Data needs to be written to global memory first before kernel can process it and then
read back after processing

— Limited by PCle* bandwidth and memory throughput

Writing to Global Buffer ‘ Kernel 1 1 Reading from Global Buffer

= With 10 channels

— Kernel can run while data flows across network interface

— System running at speed of network interface

Reading from IO Channel

Kernel 1 —

Writing to 10 Channel

Channel Declaration

= Enable the Intel® FPGA extension for channels

#pragma OPENCL EXTENSION cl intel channels : enable

= Declare file-scope channel handle along with type

— Supports any built-in OpenCL™ or user defined types
— structs, char, uchar, short, ushort, int, uint, long, ulong, float, vector data types
— Type must be 1024 bits or less

— Optionally specify depth of FIFO (Buffered Channel)
— Declaring an array of channels produces independent channels

channel int a; // Channel ‘a’ for ints
channel long b attribute ((depth(8))); //buffered channel b
channel floatd4 c[2]; //Creates 2 float4 channels, c[0] and c[1]

Programmable Solutions Group

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
(lntel 137

Blocking Channel Reads and Writes

Function Prototypes
void write channel intel (channel <type> channel id, const <type> data);

<type> read channel intel (channel <type> channel id);

= Each write adds a single piece of data to the channel

— write channel intel(a channel, (floatd) x);

» Each read removes a single piece of data from the channel

— 1int x = read channel intel (b channel);

= channel id identifies the buffer
= write channel intel blocks if the channel is full
* read channel intel blocks if the channel is empty

= <type> must match between reads and writes and channel handle

Programmable Solutions Group (intel' . 138

Non-Blocking Channel Reads and Writes

Function Prototype

write channel nb intel(channel <type> channel id, const <type> data);

<type> read channel nb intel (channel <type> channel id,) ;

= Like blocking calls except functions does not block, pipeline not stalled

= Functions returns bool value indicating if operation took place successfully
— 1nt x = read channel nb intel(a channel, é&valid);
— ‘X' gets data if ‘valid’ is true
— valid = write channel nb intel (b channel, x);

‘b_channel” contains ‘X’ if ‘valid’ is true

= Useful if operation may not occur, when dealing with 1/0O channels, or to facilitate work
distribution

Programmable Solutions Group (intel' . 139

Kernel Concurrency

= Channels designed to work with reading & writing kernels executing in parallel
— Limited storage in the channel
— Not the standard model for OpenCL™ kernels

= May require changes to the host code

» Use a separate command queue for each kernel

— To allow for parallelism with in-order queues
#define NUM KERNELS

std::vector<cl::Kernel> kernels;
std::vector<cl::CommandQueue> myqueue;

*OpenCL and the OpenCL logo are trademarks of Apple |

Programmable Solutions Group

Buffered Channels

= Default channels are 0-depth, i.e. no storage, read and write happens together
= Use the depth attribute to specify a depth for the channel

= Use buffered channels if there are temporary imbalances btw. reads and writes

— Prevents stall (profiler can detect stalls)

— Conditional reads/writes may cause imbalance between reads/writes

channel int ¢ attribute (()) ;
__kernel void producer (..) {
if (..)

write channel intel(c, ..)
}
__kernel void consumer (..) {
if (..)
val=read channel intel (c)

Programmable Solutions Group (intel' . 141

/O Channels

= Channels used with input or output features of a board
— E.g., network interfaces, PCle* interfaces, camera interfaces, etc.

= Behavior defined by the Board Support Package (check board spec.xml)

<channels>
<interface name=“udp 0” port=“udp0 out” type=“streamsource” width=“256” chan id=“ethO in”/>
<interface name="“pcie” port=“"tx” type=“streamsink” width="“32"” chan id=“pcie_ out” />
</channels>

= Declaration of I/O channel using the io attribute

channel QUDPWord udp_in IO attribute ((io(“ethO_in”)));
channel float data _ attribute ((io(“pcie out”))):;

= Usage same as other channels

— data = read channel intel (udp 1in I0);

Programmable Solutions Group *Other names and brands may be claimed as the property of others (intell . 142

Implementing OpenCL™ Pipes

Implement pipes instead of channels for compatibility with other SDKs

= AOC implements pipes as a wrapper around channels
— Channels are statically inferred from pipe arguments
— Kernel CUs are connected via name matching

— All rules that apply to channels also apply to pipes
— Types supported, size limit, blocking/non-blocking behavior, etc.

= AOC does not support the entire pipes specification
— Not fully OpenCL™ 2.0 conformant

OpenCL and the OpenCL logo are trademarks of Apple |

Pipe Syntax, Kernel Side

= Pipes are specified as a kernel argument with the keyword pipe

- read onlyorwrite only qualifier and data type required in declaration

= Read / Write to the pipe using read pipe () andwrite pipe () calls

— Specify pipe name and address of variable to read/write

__kernel void producer (write only pipe uint p0) {
for (..)

error = write pipe(p0, &data); Compiler looks for matching

} -
kernel void consumer (read only pipe uint pO0) mpelDFORN”]aFNV
- - connection

for (..)
error = read pipe(p0, &value);

AR

Programmable Solutions Group

Pipe Syntax, Host Side

Use clCreatePipe to create the pipe object

— Similarto c1CreateBuffer, returns c1 mem object
» Use clSetKernelArg to map pipe to appropriate read and write kernel args
= Both of these functions has on the creation of the pipe hardware

» Needs to be called to conform to the OpenCL™ standard

oo R e

cl mem pipe = clCreatePipe (context, 0, sizeof (float), SIZE, NULL, &status);

Pipe Depth Pipe Properties

clSetKernelArg (producer kernel, 0, sizeof(cl mem), &pipe);

clSetKernelArg (consumer kernel, Q, sizeof(cl mem), &pipe);
Kernel argument index

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H B
|ntel 145

Programmable Solutions Group

Pipe Attributes

= Apply attribute ((blocking)) for blocking behavior

— Pipes are by default
__kernel void producer (write only pipe uint rO0)
__kernel void consumer (read only pipe uint r0)

= Use depth attribute to specify the minimum depth of a pipe

— If read and write depths differ, AOC uses the larger depth of the two

#define SIZE 100
kernel void producer (write only pipe uint __ attribute ((depth(SIZE))) pl)
kernel void consumer (read only pipe uint __ attribute_ ((depth(SIZE))) pl)

= |/O Pipes with io attribute

__kernel void myk (read only pipe QUDPWord __ attribute ((io(“ethO_in))) UDP_in)

Programmable Solutions Group (intel' . 146

Channels / Pipes in the Area Report

Channel / pipe implementation shown in the detailed HTML area report
— Width implemented, Depth implemented (vs depth requested)

— Resources used

LEs FFs RAMs DSPs Details

Board interface 38262 44528 257 0 » Platform interface logic.
Global interconnect 5034 9568 52 0 - Global interconnect for 1 global load and 1 global store. |I
hannel 32 32 0 0 - Channel is implemented 32 bits wide by O deep.

(__acl_p1_pipe_channel)

= Channel is implemented 32 bits wide by 256 deep. Requested depth was 128.
Channel depth was changed for the following reasons:

channels.cl4 (c0) 49 167 1 0

- instruction scheduling requirements

- nature of underlying FIFO implementation

Programmable Solutions Group (intel‘ . 147

NDRange and Single Work-Item Kernel Interaction
with Channels/Pipes

= Single Work-Item and NDRange Kernel can interact predictably
= Algorithm may naturally split into both single work-item and NDRange kernels

» EX. Generating random data for a Monte Carlo simulation:
kernel void rng(int seed) { E::::$>
int r = seed; -

while (true) { kernel void sim(...) {
r = rand(r); int gid = get global id(0);
int rnd =

} out [gid] = do_sim(data, rnd);
} }

Programmable Solutions Group

Arbitration with Non-BIocking Channels/Pipes

C_IN1
C_IN2 >

kernel void arb2tol (
bool v = false;
while (true) {

c_out >

int d = read channel nb intel(C INI1, &v);

if(!v)

d = read channel nb intel (C IN2, &v);

if(v)

write channel intel (C _OUT, d);

Programmable Solutions Group

Channel / Pipe Example Application

Host Processor

Command Command Command
gqueue #1 gueue #2 queue #3
Read | FIFO =3 StreamerKernel | FIFO =——— vt
‘ Kernel ‘ Kernel

Global Memory Buffer

» Three Kernels:
— Read Kernel -- (Transfers data from DDR to channel)
— Streamer Kernel -- (Reads from input channel, processes data, and writes to output pipe)
— Write Kernel -- (Transfers data from pipe to DDR)

» Separate queues needed to launch kernels in parallel

Programmable Solutions Group

Channel / Pipe Example Application Code

#pragma OPENCL EXTENSION cl_intel channels enable

channel uint cO0 __ attribute ((depth(128)))
~__ This NDRange kernel reads data from
the host and sends it to channel cO

kernel void host reader(global const uint *src) {
size t gID=get global id(0); ‘E
write channel intel(cO, src[gID]);

}
{

kernel void streamer (write only pipe uint pl __ attribute_ ((blocking)), int N)

uint iData;

for (unsigned i1=0; i<N; i++) {
iData = read channel intel (c0); e

iData = word convert (iData) ;
write pipe(pl, &iData);

This single work-item kernel processes
data from cO and passes it to p1l.

}

}
kernel void host writer(global uint *dst, read only pipe uint pl __ attribute_ ((blocking))) {

size t gID = get global id(0);

uint v§lue=0; (This NDRange kernel reads data from
read pipe(pl, &value); pipe pl and writes data to host
dst[gID] = value;

intel‘ . 151

Programmable Solutions Group

Host Pipes

= Allow host to send/receive data to/from the kernels without global memory
— Performance advantage

— Achieve peak host-to device bandwidth

Kernel Code

#pragma OPENCL EXTENSION cl intel fpga host pipe : enable
kernel void reader(attribute ((intel host accessible))

__read only pipe ulong4 host in) {....}
kernel void writer(attribute ((intel host accessible))

__write only pipe ulong4 device out) {....}

Host Code
HOST System

cl mem read pipe = clCreatePipe(context,CL MEM HOST READ ONLY, ..); Memory
cl mem write pipe = clCreatePipe(context, CL MEM HOST WRITE ONLY, ..);

clReadPipelIntelFPGA (read pipe, &val);

clWritePipeIntelFPGA (write pipe, &val);

Programmable Solutions Group (intel. . 152

Pipes vs Channels

» Most cases they are the same

— Usage and Performance

= Use Pipes
— Partially conformant to OpenCL™ standards
— Needs modification from OpenCL 2.0 Pipes
= Use Channels
— With autorun kernels

— Use model more aligned with FPGA implementation
— Pipe usage more verbose, especially on the host side

. *OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos H F
Programmable Solutions Group s (7= Y d A . A FRMESE ! |nte| . 153

Optimizing Memory Accesses

Optimizing Memory Accesses Agenda

Overview

Global/constant memory

Local memory

Private memory

Host memory

OpenCL™ Memory Model

= Global Memory
— Off-chip memory (DDR / QDR / HMC)

— Slow for non-sequential access

= Constant Memory
— Visible to all workgroups

— Accessed through shared cache

= Local Memory
— Shared within workgroup
— FPGA on-chip memory

— Much higher bandwidth and lower latency
than global memory

Programmable Solutions Group

* Private Memory
— Unique to a work-item

— FPGA registers or on-chip memory

= Host Memory (Separate CPU Memory)

Kernel

Global Memory

Constant Memo

Workgroup

Local Memory

Work-item Work-item
Private Private
Memory Memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Need to Optimize Memory Accesses

= |[n many real-world algorithms, data movement through memory is often the
bottleneck

= Memory access efficiency often determine overall performance of a kernel

— Large performance gains can be achieved from optimization effort

= Global Memory
— Maximum global memory BW is much smaller than maximum local memory BW

— Maximum computational BW of the FPGA is much larger than the global memory BW

— Increases in kernel performance leads to increases in global memory BW
requirements

HTML Report: System Viewer and Memories

. . . .
= Stall point graph that include load and store information between kernel
. . .
p I pel I n e a n d l I le l I IO rl eS o Report: cumulative_multiply_solution - Mozilla Firefox
@ Report: cumulative_... x | +
€ | @ | filez///home/student/fpga_trn/Opt_OpenCL/cumulative_multiply_solution c Search B ¥ A O =
. . .
= Verify memory replication capors e
System viewer Reset zoom| [Clear selection| ¥ Control ¥ Memory cumulative_multiply_solution.cl -
. Beset Zoom
14 double mul_copiesi8l; g
» |dentify stallable loads and stores S— B A
EEE 16 nul_copiesljl=1.0;
17
18 for (unsigned j =0; j < cols*rows; j++)
19~ {
20 //Use top copy
. 21 double cur=nul_copies[7]*inputljl;
= o€ee eo Impliemente 2
23 //shift register L
24 for (unsigned k=7; k>@; k--)
25 mul_copies[k] = mul _copies[k-11;
26 nul_copies[o]-cur;
— " 27 T
28
29 //Combine results
30 for (unsigned j=0; j<8; j++)
31 result = result * mul_copies(jl;
GigkalVamary g *output = result
Width: &4 bits | 34} '
35
Type: Burst-coalesced = =
E 37 ™
Ctall rees Mo
Stall-free: No .
res to: output a
= F Store:
i Width 64 bits
Type Burst-coalesced
Stall-free No
Stores to output L]
.Starlcyds fo o

Programmable Solutions Group

System Viewer: Visualize Memory Accesses

= Visualize Connections from each load/store to local and global memory

System viewer matrixMult.cl - %

55 1/

W Control M Memory 56 // This is actually an optimization A

that the compiler can perform,

57 // but is shown here for
illustration purposes.
58 A_local[local y][local x] =
A_width * local_y + loc
59 B_local[local_x][local_y] = GIObaI Memow
B_width * local_y + loc
Local Memory 60
61 // Wait for the entire bloc
loaded.
B_local [4] (x3) 62 barrier(CLK_LOCAL_MEM_FENCE
63
64 // Do the dot product accum
within this block. Full
the loop.
65 // As a result of the swap
indices above, memory a
to

Programmable Solutions Group

HTML Area Report for Memory Implementation

= Shows global and constant cache interconnect implemented
= Reports type of global load store unit implemented

» |ocal memory implementation reported
— Overall state: Optimal, Good but replicated, Potentially inefficient

— Total size, replication factors, stallable/stall-free, merging, banking, number of reads
and writes

= Shows private variable implementation

Programmable Solutions Group

HTML Kernel Memory Viewer

Displays the local memory present in your design
lllustrates:

= Memory replication

= Banking

= Implemented arbitration

» Read/write capabilities of each memory port

Programmable Solutions Group

HLD FPGA Reports (Beta)

View reports...»

Memor y list Kernel memory viewer

4 [big_Imem_ar_dw
 {F Imem

#Bank 0

#Bank 1 .

4 [big_imem_ar_aw

+ {F Imem

#ieank 0 .

#Bank 1
#iBank 2

#Bank 3 .
4 B big_Imem_4r_5w

o TF Imem
#Bank 0
#Bank 1
#Bank 2
#Bank 3

PBank 4 .

#Bank 5
#Bank 6
#Bank 7
4 () big_3imem_2r_1
4 {F Imem0, Imem .
#Bank 0
4 [big_almem_2r_1
o {3 Imemo, Imem .
»

Details

Imem Info
Requested size
Implemented size
Number of banks
Bank width

Reset Zoom| (Clear Selection

Imem

Bank 0
£~
N RW)
-

@

.
(@w
* /'@

|
|\ Bank 1

A\

\(E\

A4

16384 bytes
32768 bytes

2
32 bits

i@ . 161

Dynamic Profiler and Memory Accesses

= Displays statistics about each memory accesses on source code tab
— Entry shows type of access: global / local

— At access location, displays pipeline stall %, occupancy %, average bandwidth,
efficiency%, cache hit%, non-aligned access, burst, and coalescing

4

‘ Global Memery BW (MEMORY) l 25600 MBIs

_[Source Code I Kemel Exacution l malrixdul

Line & | Source Code | Adtributes. Stall% Occupancy® Bandwidth

64 2-<=aEnd; E Kernel tab shows overall statistics

65 a+=aStep, b += bSlep){

&6 [|a
67 I Load the matrices from davice memory ‘ Board c5soc

a8 if'to shared memory, each thread loads 5
9 1 ane element of each matrix !
70 AS{l,) = Ala + UWA" ty = b 0: __global(MEMORY} read | 0: 2.93% 0:95.9% 0: 1208 5MBs, 100,00%EMciency ‘ Sl Menioa R (ME NI S0 ‘ SEH MR A
Li | BS(ty, tx) = B[b + uWB *ty + ti} o JIonaI{MEMOE‘\\rBau 0 0.08% 0: 95.9% 0: 10.1MB/s, 100.00%Eficiency

72 : [Source Code T Kernel Execution TmatrixMull]

T3 i Synchronize to make sure the mafrices are loaded O __globa{MEMORY} read -

74 barmier(CLK_LOCAL_MEM_FENCE], Cache Hits: 99.9% Statistic Measured | Optimal

75 Non-aligned Accesses: 0.0% Worse Case Stall (__glob... | 42.83% 0%

76 #pragma unroll Memory site coalescad with other memory sites. Kernel Clock Frequency 129.3 MHz na

7 Tor (int k = 0; k < BLOCK_SIZE; ++k) { ¥ i Global BW (MEMORY:ban... | 1176.6 MB/s 3200 MB/s

Ta Csub #= AS(ty, k) " BS(k, b); 0 __local read 0:0.0% 0:95.9% 0= Average Write Burst 1 16

79 H Average Read Burst) 16

80 1EEN

Programmable Solutions Group (intel' . 162

Optimizing Memory Accesses Agenda

= Global/constant memory

Global Memory in OpenCL™

" global address space

__kernel void add(_global float* a,
__global float* b,

— Used to transfer data between host and device " global float* c)
. . {
— Used for kernel-to-kernel communication int i = get_global id(0);
i . c[i] = al[i] + b[i];
— Shared by all work-items in all workgroups }

= Generally allocated on host as c1: :Memory object
— Created/allocated with c1: :Buffer constructor
— Data transferred using c1: :enqueue [Read/Write]Buffer method

— Object assigned to global pointer argument of kernels

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

OpenCL™ BSP Global Memory

= Global memory controllers and
devices defined by the Board
Support Package

» Global memory interconnect built
by the kernel compiler

Kernel
Pipeline Pipeline

.Hﬂh .Hﬂh

Programmable Solutions Group

Compiler Generated Hardware

= Custom global interconnect created Pipeline

= LSU type selected by the compiler
— Performs Width Adaptation 0

— User data (e.g. 32-bit int) to memory word

(512-bit DRAM word)
— Coalesced to avoid wasted bandwidth

‘?l

foo.cl
global int* x;

~~ AOC Compiler

':1.r1t y=x1[k]; /
BSP Global

Memory

Programmable Solutions Group

LS U Types SINTELFPGAOCLSDKROOT\ip

Marme
2| lsu_atomic.v

\Z] Isu_basic_coalescery

" Burst-Coalesced T T r—
— Most common global memory LSU ::tb,lud
— Specialized LSU to groups loads/stores into bursts (::_ppl'gd‘“” |
— | LSU for load can cache/re-use data ::"f‘“:'“
— Private caching is applied heuristically 7] lsu_simple
= Streaming l :i;:pefeth I
— Simplified version of burst-coalesced LSU that supports only completely Z Iz::v:i::_wrapper-v
linear accesses Load a[i] Load b[i]
= Pipelined N\
— Used for local memory a[i]lb[i]
= And others Store cfi]

Programmable Solutions Group (intel' . 167

Global Memory Load Store Units in the Area Report

Implementation of LSUs annotated with source line

* Include size of cache, situations when cache is created, and other tips

[-] BlockO (Logic: 1%) 4727 (1%) 6841 (1%) 72 (3%) 0 (0%)
State 32 32 0 0
caching.cl:3 354 402 13 0
caching.cl:3 3094 4489 43 0
caching.cl:7 ‘ 1247 ‘ 1918 ‘ 16 ‘ 0

gl _test{global
get_glo)

out[i] = cached_value;

1
J

« Load with a private 512 kilobit cache.

Cache is not shared with any other load. It
is flushed on kernel start. Use Dynamic
Profiler to verify cache effectiveness.
Other kernels should not be updating the
data in global memaory while this kernel is
using it. Cache is created when memory
access pattern is data-dependent or
appears to be repetitive. Simplify access
pattern or mark pointer as 'volatile' to
disable generation of this cache.

* restrict in, global

Programmable Solutions Group

* restrict out) {

intel‘ . 168

Arbitration Interconnect to Global Memory

= Generated automatically by the compiler Pipeline

= Arbitrate to physical interfaces

— Tree interconnect (high bandwidth)
OR

— Ring interconnect (high f,,.,)
— Increase reliance on large bursts

— Arbitration type chosen base on # of LSUs

= Distribute (load balance) across physical interfaces

Global
Memory

Kernel Argument Constant Memory

kernel void my kernel(constant float * restrict coef)

= Written to global memory and likely constant cache by the host
— Can be modified later by the host, shared by all work-groups

= Use for read-only data that all work-groups access
— E.g. high-bandwidth table lookups

» constants kernel arguments are also stored in on-chip memory if possible

— Optimized for cache hit performance

— Default size is 16kB
— Shared by all constant arguments
— Can be set at kernel compile time

Complete Picture

Pipeline

Load Unit Load Unit Load Unit Constant Load Constant Load

stream Coalesce Cache

Constant Cache

Low Bandwidth

Global Memory

Programmable Solutions Group

Global / Constant Cache Interconnect Area Report

= Global interconnect — accessing external memory (e.g. DDR4)

— Number of global loads and stores affects area

= Constant cache interconnect — accessing memory marked as constant

— Number of reads affects replication which affects area

Board interface 38262 44528 257 0 « Platform interface logic.

+ Global interconnect for O global loads and 2
kernel i ant Fope , r Global interconnect 5034 9568 52 0 gliobal stores.

1= « 16384 bytes constant cache accessible to all
iy _ . e E aw 77 kernels and is persistent across kernel
dst [l] = =] invocations. Data inside the cache is replicated 2
times to support 6 reads. Cache optimized for
. hits, misses incur a large penalty. If amount of
Constant cache intercannect 894 9500 4 0 data in the cache is small, consider passing it by
value as a kernel argument. Use Dynamic
Profiler to check stalls on accesses to the cache
to assess the cache's effectiveness. Profiling
4= . actual cache hit rate is currently not supported.
- i3

Programmable Solutions Group (intel. . 172

kernel ant *src, global *dst) {

File Scope constant

= File scope constant variables supported

= Dedicated on-chip ROM resources allocated for each variable

— Not shared with constant arguments, not stored in global memory

— In-lined into the kernel compute unit

constant int my array([4] = {0x0, Oxl, 0x2, 0x3};

__kernel void my kernel (_ global int * my buffer)
{

size t gid = get global id(0);

my buffer[gid] += my array([gid $ 4];

Programmable Solutions Group (intel' . 173

Heterogeneous Memory

= Some BSPs offer more than one type of global memory
— DDR, QDR, HMC, etc.

= Memory location can be set per kernel argument using
— Using buffer location (“MEMORY NAME”)

__kernel void foo (

global jnt *x, // Default memorv Jlocation (usually DDR)
global| attribute ((buffer location("DDR")))| int *y,
global| attribute ((buffer location("QDR")))| int *z,
global| attribute ((buffer location("HMC")))]int *x)

cl::Buffer mybuf (context, CL_MEM HETEROGENEOUS INTEL, size, NULL, &errNum);

Programmable Solutions Group

i@ . 174

Global Memory Banking Optimizations

Burst- Separate
» Global memory addresses can be set as Interleaved Partitions Address
: e OX7FFF_FFFF
interleaved or partitioned by bank(controller) Bank 2

0x7FFFFCO00

. . Bank 2
= Burst-interleaved is the default ¥
O0x7FFF_F800

— Best for sequential traffic and for load
balancing between memory banks

0x0000_0800

Bank 2

— Same behavior as GPUs

» |nterleaving granularity set by BSP in XML

0x0000_0400

0x0000_0000

— Usually width*maxburst board_spec.xml

<!-- DDR3-1600 -->
<global mem name="DDR" max bandwidth="25600" interleaved_bytes="1024ﬂ config addr="0x018">

<interface name="board" [port="kernel memO" Jypse Sraver wiath- o1 maxburst="16" address="0x00000000" size="0x100000000" latency="240"/>
<interface name="board" |port="kernel meml"|type="slave" width="512" maxburst="16" address="0x100000000" size="0x100000000" latency="240"/>
</global mem>

Programmable Solutions Group (intel. . 175

Manually Partitioning Global Memory

= Turn off interleaving

— aoc <kernel file>.cl -no-interleaving <memory type>

= Allocate each memory buffer to one of the banks
— Use CL CHANNEL... flags

— Allocate each buffer to designated memory bank only

Bank Allocated

CL CHANNEL 1 INTELFPGA Allocates to lowest available memory region
CL CHANNEL 2 INTELFPGA Allocates to the second memory bank
CL CHANNEL n INTELFPGA Allocates to the nt" bank (as long as the board supports it)

cl::Buffer mybuf (context, CL_CHANNEL_Z_INTELFPGA, size, 0, 0);

Programmable Solutions Group (intel' . 176

Matrix Multiplication: Global Memory (default)

for (int 1 = 0; i < WIDTH; i++) {

Csub += A[y * WIDTH + i] * B[x + WIDTH * i];
}
Cly * WIDTH + x] = Csub;

Kernel DIMM1
Load A 9

vs)

Load B § DIMM?2

O|m (>

Store C §

Matrix Multiplication: Global Memory (partitioned)

for (int i1 = 0; 1 < WIDTH; i++) {

= Optimize matrix A and B access Csub += Aly * WIDTH + i] * B[x + WIDTH * i];
. }
— By using separate banks Cly * WIDTH + %] = Csub;
= C is rarely accessed so don'’t care SIMML
feme -0ad A m ;
Load B { DIMM?2

StoreC 4

aoc MatrixMult.cl -no-interleaving DDR

Programmable Solutions Group (intel. .

Optimizing Memory Accesses Agenda

= Local memory

On-chip Memory Systems

» “Local” and some “private” memories use on-chip RAM resources

— Much better performance than global memories

» Local memory system is customized to your application at compile time
— Dependent on data type and usage

— Banking configuration (number of banks, width), and interconnect
customized to minimize contention

— Big advantage over fixed-architecture accelerators

— If your code is optimized for another architecture, undo the fixed-architecture
workaround

Programmable Solutions Group

Statically Allocating Local Memory

Statically allocate ___kernel void mykernel (_ global float* ina, ..) {

local pointer
> __local float ina local[64];

Cache data in
local memory

> ina local[get local 1id(0)] = inal[get global id(0)];

_ barrier (CLK LOCAL MEM FENCE) ;
Barrier ensures all work- - — -

items in the workgroup have
loaded data into cache

before moving on. }
Discussed in an upcoming

slide.

// Usage of any element of ina local

Programmable Solutions Group (intel' . 181

Dynamically Allocated Local Memory

= Not preferred

= For Intel® FPGA, a static amount is always allocated at compile time

— Dynamically allocated size must be <= statically allocated size

__kernel void mykernel (global float* ina, _ local float *ina local..) {
Kernel ina local[get local id(0)] = a[get global id(0)]; local memory

// Usage of any element of ina local

cl::Kernel::setArg (0, &global mem buffer);
Host Code cl::Kernel:setArg(l, NULL)

arg_value must be NULL
when argument is local!

Programmable Solutions Group (intel' . 182

Local Memory Kernel Argument Allocation

= Physical pointer kernel arguments size set at compile time
= By default 16kB of local memory is allocated for each variable

" cl::Kernel::setArg () cannot request data larger than the statically
allocated size

= Use local mem size attribute to manually set size, must be power of 2

— Specify a pointer size in bytes
16kB allocated for A 1kB allocated for B

__kernel void my kernel (l// l

local float * A,

—)) 32kB allocated for C
attribute ((local mem size(1024))) local float* B, ‘/,/"
attribute ((local mem size(32768))) local float* C)

Programmable Solutions Group (intel' . 183

Efficient On-chip Memory Systems

= Loads/stores with stall-free properties ideal O
— Have fixed latency -

— Access latency is lower .

— Use less resources

— Can be included in stall-free execution regions of the pipeline

= Lead to simpler interconnect

— No arbitration is needed

= Can be scheduled more efficiently

BT
"REES hEas DTS-

— See discussions on dependencies

Programmable Solutions Group (intel' . 184

On-chip memory architecture

= Basic memory architectures map to dual-ported M20Ks
— Concurrently accomodates #1oads + #stores < 2

= Kernels may require many complex accesses

Kernel Pipeline @ Local Memory Interconnect @

= Compiler optimizes kernel pipeline, interconnect and memory system

— Through splitting, coalescing, banking, replication, double-pumping, port sharing

Interconnect: Port Sharing

» Interconnect includes access arbitration to memory ports

(store Arbitration
(load nodes

(load
(load
(

(

(

Memory

load
load
load

= With no optimization, sharing ports destroys performance

— Pipeline stalls due to arbitration for concurrent accesses

— Unless mutually exclusive accesses

= Key to high local-memory efficiency is stall-free memory accesses

— Concurrent memory accesses can access memory without contention

Programmable Solutions Group (intel' . 186

Automatic Double Pumping

1X 2x clock domain 2X
Eor:; Port 1 H
Port 1 s o PO 2 iy
POIt2 sy Egﬁ ‘ ::j >
Clk —[> | o 2 > | 2XClk]
[store | | Banko
(load ©
(load ()
(load Memory
[load 2x clock W)
(load
[load —)W)

Programmable Solutions Group

Replication

1-3write< T \
— - —
portswih € :
doublepump D e > Y-read
>
—
> —_]
~
“Port0
(store “Portl Memory
o® (load " Port2 2x clock
\Q\\"‘ o (load ~ Port3
Sl load o /
@ (load Y
[load “Port0
[load = Port1 Memory
" Port2 2x clock
J

Programmable Solutions Group (intel. . 188

Local Memory Replication Example ety

Number of write ports per bank: 1
Total replication: 3

___kernel
void foo replication (int indl, int ind2, int val, int calc) { = :
__local int arrayl 1; (R
int res = 0;
LD | \ R
<:> array[indl] = val; ~ | .
fpragma unroll
for (il’lt i = ’ i < ’; i++) LD ¢ (R
res += array[ind2+i];
LD T LR
calc = res; Dt r
}
LD | i R
LD T LR

1 write port, 9 read ports
Up to 3 read ports, 1 write port per replicant (double pump) o
Therefore, replication factor = 3 needed for stall free accesses

Programmable Solutions Group (intel' . 189

Compiler Code Analysis

= Double pumping/replication done with minimal understanding of kernel pipeline

— Just assume that ALL loads and stores are concurrent

= Compiler analyzes kernel code for more advanced optimizations
— Based access patterns and decomposition of the address
local float B[1024][32];
é[i] [J] = ..
= Example, B[1] [j] accesses address =
- B + ((1 * 32 + 3) * sizeof(float))
— Access is always at a 32-bit boundary

— More powerful information inferred from related accesses

Programmable Solutions Group

Static Coalescing

= Components often access consecutive addresses (variable A)

__kernel void example () {

__local int A[32][2], B[32][2]; =
— Y
Brlid + x][1];

= Code specifies 2 consecutive stores to array A

= Compiler merges consecutive memory accesses into a wider accesses

— Leads to fewer ports used and therefore less contention

= Memory

— One wider store to A

Programmable Solutions Group (intel' . 191

1dth: 128 bits

Coalescing Type: Pipelined

kernel Stall-free: Yes

void foo coal (int indl, int ind2, int val,

Width: 128 bj

int calc) E——
{ Sizll-fr'g:: Yes arrav
Loads from: array =
__local int arrayl 1; eyt 5 Bank 0
int res = 0;
R
#fpragma unroll
for (int i = 0; i < 4; i4+)
array[indl*Z 4+ 1] = val;
fpragma unroll ; | |
for (int 1 = 0; 1 < 4; i++) ST W

res += array[ind2*4 + 1i];

calc = res;

Qﬁgallw

Programmable Solutions Group

Automatic Banking

kernel void example() {

local int A[32][2], B[32][2];
int lid = get_local_id(e); = Memory

A[lid][e] = B[lid][@];
A[lid][1] = B[lid + x][1];

b .

= Can the compiler do better for access to array B? <_[Memory]

1 access / bank

— Currently 2 loads: B[11d] [0] and B[1id + x][1] Memory]

— The loads will access two disjoint partitions of the memory

= Solution: Compiler can partition memory into multiple banks to create
concurrent accesses

— Create separate memories for B with individual set of ports

Programmable Solutions Group (intel' . 193

Banking

Use multiple banks on lower bits to implement the memory

___kernel
volid foo banking (int indl, int ind2Z,

int vall, int val2, int calc) {

__local int array[1024]1[2];

larray[indl][O] = vall;_
array[ind2][!] = val2;

calc = |(arraz[ind2][0]r+

array[indl][1])

® ®

®

Programmable Solutions Group

array
Bank 0

Bank 1

Memory Geometry Unrelated to Array Shape

= Compiler creates memory geometry based on how an array is accessed, not

how it's declared
= Array could be banked:

local int Ilmem[N];

= Coalesced

local int lmem[N];

= Or coalesced and banked:

local int Ilmem[N];

Programmable Solutions Group

1l

|:| Bank O
|:| Bank 1

[] Bank2
B Bank 3

] BankO

[] BankO
|:| Bank 1

intel‘ . 195

2D Possible Geometries

= 2D, coalesced and banked: [Banko
i : |:| Bank 1
local int lmem[N][4]; J ‘
[] Bank?2
I Bank 3

= 2D, coalesced

local int lmem[N][4]; J B 5ark 0. clomento

l 10 | 11 | 12 | 13 | [Banko, element1

= 2D, banked

local int lmem([N][4]; J ‘ 00 | 02 | o2
10 | 11| 12

[] Banko
] Bank1
[] Bank2
B Bank 3

Programmable Solutions Group

Local Memory in the Area Report

= Many different local memory properties shown in HTML area report

— Overall state:

— Optimal : Stall-free, no replication or replication did not use extra block RAM
— Good but replicated: Stall-free
— Potentially inefficient: Possible stalls

— Total size, replication factors, stallable/stall-free, merging, banking, # reads + writes
— Full details of each reported property in Best Practices Guide
— Private variables implemented in on-chip RAM reported as local

« Local memory: Optimal.
Requested size 512 bytes (rounded up
to nearest power of 2), implemented size
1024 bytes. replicated 2 times total, stall-
L . free. 1 read and 1 write. Additional
free_replication.cl:9 (Imem) 0 0 1 0 information:
- Replicated 2 times to efficiently support

multiple simultaneous workgroups. This
replication resulted in no increase in
actual block RAM usage.

Programmable Solutions Group (intel' . 197

Local Memory — Replication

= Replication applied to achieve a stall-free access

— Message: Local memory: Good but replicated.

= Local memory systems with replication can still be optimal if no additional block
RAMs are used

— Replicated using unused depth in block RAM

+ Local memory: Good but replicated.
Requestad size 16384 bytes (rounded up to nearest power of
2), implemented size 147456 bytes, replicated 9 times total,
stall-free, 3 reads and 3 writes. Additional information:
- Merged with memaory systems declared at:
Jimem_nosplit.cl:10, 3imem_nosplit.cl:11
’ - Replicated 3 times to efficiently su multiple simultaneous
Simem_nospit.ct9 (imemo0) » 812 % 0 w:‘pgraupe. This replication re;ultem ume: increase In
actual block RAM usage. Reducing the number of barriers or
increasing max_work_group_size may help reduce this
replication factor.
- Replicated 3 times to efficiently support multiple accesses. To
reduce this replication factor, reduce number of read and write
accesses

Programmable Solutions Group (intel. . 198

Local Memory - Banking

em[1

= Proper banking can help solve stalls

Imem[N

= |nefficient local memory constructs flagged
,ﬁfﬁjﬁ%ﬁ&pmméﬁﬁﬁﬁmhn

configuration.

Requested size 16384 bytes (rounded

up to nearest power of 2), implemented

size 32768 bytes. replicated 2 times

total. stallable, 4 reads and 4 writes.
tignal information:

- Reduce Write accesses

or fix bankina,tn.make this memory

aysem stall-free. Banking may be I

. improved by using compile-time known
not_banked_2d.ci12 (imem) 66 12 16 0 indexing on lowest array dimension.

- Replicatet-2-times-tereifieiemnty
support multiple simultaneous
workgroups. This replication resulted in
2 times increase in actual biock RAM
usage. Reducing the number of
barriers or increasing
max_work_group_size may help
reduce this replication factor.

- Banked on lowest dimension into 2
separate banks (this s a good thini

ocal memory: Good but replicated.
Reguested size 16384 bytes (rounded up
to nearest power of 2). implemented size
_replicated 2 time; -
free, 4 reads and 4 writes. Additional
information:
- Replicated 2 times to efficiently support
banked_2d.cl:10 (Imem) 0 0 16 0 multiple simultanecus workgroups. This
replication resulted in 2 times increase in
actual block RAM usage. Reducing the
number of barriers or increasing
max_work_group_size may help reduce
this replication factor.
- Banked on lowest dimension into 4
separate banks (this is a good thing).

Programmable Solutions Group

HTML System Viewer — Local Memory

= Examine each load or store unit

— Type, stall-free status, latency

= View memory implementation
— Banking

System viewer

— Replication

Clear Selection] *' Control ¥ Memory

width: 32 bits —

Type: Pipelined 11 Local Mﬁm_m .
Stall-free: Yes

Start-Cycle: 426 in_a_local [1] (x3) in_b_local [1] (x3)
Latency: 5

Additional Info: Part of a J

uster.

= Visualize each access

Programmable Solutions Group

/55
==
(=1

Kernel Memory Viewer

Displays detailed information of memory layout
= Select memories and banks to show

= Shows number/type of ports, and sharing/arbitration
logic if any

= Shows each read/write site

— Includes access width

®@ ® ® ® ©® G
®

— Stall-free or stallable (Red indicates stallable)

. - [@

Programmable Solutions Group (intel. . 201

Local Memory Configuration with Attributes

= Use attributes to force the compiler to choose a certain local memory
configuration

= Use when compiler unable to infer optimal implementation

Example

int attribute ((memory,
numbanks (2) ,
bankwidth (32),
doublepump,
numwriteports (1)
numreadports(4))) lmem[128];

Programmable Solutions Group (intel' . 202

Local Memory Attributes

Control Memory Architecture Using Attributes

Attribute Effect

register/memory Controls whether a register or onchip memory implementation is used
numbanks (N) Sets the number of banks

bankwidth(N) Sets the bank width in bytes

singlepump/doublepump Controls whether the memory is single- or double-pumped
numreadports(N) Specifies that the memory must have N read ports
numwriteports(N) Specifies that the memory must have N write ports

merge(“label”, Forces two or more variables to be implemented in the same
“direction”) memory system

bank_bits(b@,bl,..,bn) Forces the memory system to split into 2n banks, with {b0, b1, ...,
bn} forming the bank-select bits

Programmable Solutions Group (intel' . 203

numbanks(N) and bankwidth(N) Memory
Attribute Usage

= Same local memory integer array 1mem[4] implemented in different

configurations
_ [Banko
__local int
__attribute ((numbanks (4), - 0 . 2 | 3 B Bank1
bankwidth (4)))
Imem[4]; [] Bank2
Imem [J Bank 3

__local int

__attribute ((numbanks (2), 0 1 - [] BankoO
bankwidth (8)))

Imem[4]; B Bank1

os)
)
=]
¥
(=]

Bank Bits Example: |
Default Implementation

__kernel void bank arb consecutive multidim (
int raddr, int waddr,
int wdata, int upperdim, int rdata) {

__local int a[2][4][128];

#pragma unroll
for (int i = 0; 1 < 4; i++)
a[upperdim] [i]l [(waddr & 0x7f)] = wdata + 1i;

int rdata = 0;

#pragma unroll

for (int i = 0; i < 4; i++) |
rdata += al[upperdim][i][(raddr & 0x7f)]; (W

@ ® ©® ® ©® 6
=
\E/

,
o B

Programmable Solutions Group (intel' . 205

Bank Bits Example:
bankbits Solution

__kernel void bank arb consecutive multidim (
int raddr, int waddr,
int wdata, int upperdim, int rdata) {

~_local int __ attribute_ ((bank_bits(8,7) ,bankwidth(4)))
a[2][4][128];

]

#pragma unroll
for (int i = 0; 1 < 4; i++)
a[upperdim] [i] [(waddr & 0x7£f)] = wdata + 1i;

Simultaneous Accesses,

2ete Seeteheet S UG No arbitration needed with

#pragma unroll
for (int i = 0; i < 4; i++)
rdata += a[upperdim] [i] [(raddr & 0x7f)];

optimal banking

Programmable Solutions Group

@ ®

@ ®

@ ®

@ ®

Bank 0

ﬂnmo .2%

Local Memory Attribute Example

Imem

= Using attributes to control replication factor

local int

___attribute ((singlepump,
numreadports (3) ,
numwriteports(l))))
lmem[16];

= No replication needed

local int

__attribute ((doublepump,
numreadports (3) ,
numwriteports(l))))
Imem([16];

Imem

Programmable Solutions Group (intel' . 207

Conclusions

Memory systems and interconnects customized for your kernel

Write simple code, especially memory indexing
— More likely to be statically decomposed
— Be aware of implemented banking

— Possible to transpose array to infer better banked behavior

Be aware of loads/stores to the same bank

— <=4 will get never-stall without replication (double pumped)

Enable replication by limiting number of stores

Matrix Multiplication Design Example:
Analyze Local Memory Access Pattern

= Non-linear access of local array B 1ocal

= For each iteration of k, pointer for array B 1ocal jumps by BLOCK_SIZE

— Large stride on each access makes it difficult for compiler to create a good
coalesced/banked local memory configuration

//Loop through block and doing the following
A local[local y][local x]= A[a + WIDTH * local y + local x];
B local[local y][local x] = B[b + WIDTH * local y + local x];
barrier (CLK _LOCAL MEM FENCE) ;
#fpragma unroll
for (int k = 0; k < BLOCK SIZE; ++k)

Csub += A local[local y][k] * B locallk][local x];

= Local memory access pattern is important, dictates implementation of local
memory

Programmable Solutions Group (intel' . 209

Matrix Multiplication: Swapping Indices

= Convert the access to local memory B 1ocal to be linear and thus much
easier for the compiler to analyze

B local[local y][local x] = B[b + WIDTH * local y + local x];

Csub += A local[local yl[k] * B local[k][local x];

¥

B local[local x][local y] = B[b + WIDTH * local y + local x];

Csub += A local[local y][k] * B local[local x] [k]’

= Sometimes the compiler will figure this out for you, but if in doubt you can
always do this easily in your source code

Programmable Solutions Group (intel' . 210

Matrix Multiplication: Local Memory Optimized

#define BLOCK SIZE 64
#define WIDTH 1024
~_kernel __ attribute((reqd work group size (BLOCK SIZE, BLOCK SIZE, 1)))
__attribute((num_simd work items (SIMD WORK ITEMS)))
void matrixMul (_ global float *restrict C, _ global float *restrict A,
__global float *restrict B)
{
__local float As[BLOCK_SIZE] [BLOCK SIZE];
__local float Bs[BLOCK_SIZE] [BLOCK SIZE];
// Initialize x(gid(0)), y(gid(l)), local x, local y, aBegin, aEnd, aStep, bStep (Hidden)
float Csub = 0.0f;
for (int a = aBegin, b = bBegin; a <= akEnd; a += aStep, b += bStep) {
A local[local y][local x]= A[a + WIDTH * local y + local x];
Note the difference in B_lo?al[local_x][local_y) = B[b + WIDTH * local y + local x];
barrier (CLK LOCAL MEM FENCE) ;
A_local and B_local = ="
. #fpragma unroll
addressing scheme. for (int k = 0; k < BLOCK_SIZE; ++k)
Csub += A local[local_y][k] * B local[local x] [k];
barrier (CLK LOCAL MEM FENCE) ;
}

Clget global id(l) * WIDTH + get global id(0)] = Csub;

Programmable Solutions Group

intel‘ . 211

Matrix Multiplication: Area Report - Local Memory

Area report (source view) matrix_mult.cl - | X
(area utilization values are estimated) 7
. ; R . s T . . 91 // The combination of these values determines the number of floating-point
Notation file:X > file:Y indicates a function call on line X was inlined using code on line Y. 92 /7 operations per cycle. o)
93
ALUTs FFs RAMs DSPs Details A 94 #include "../host/inc/matrixMult.h”
95
96 #ifndef SIMD_WORK_ITEMS
97 #define SIMD_WORK_ITEMS 4 // default value
98 #endif
Board interface 38262 44528 257 -] = Platform i... 99
100 _ kernel
Global interconnect 2779 12545 78 9 « Global int... 101 __ attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1)))
182 _ attribute((num_simd_work_items(SIMD_WORK_ITEMS)))
183 wvoid matrixMult(// Input and output matrices
164 __global float *restrict C,
105 _ global float *A,
106 __global float *B,
Data control overhead 1982 5225 14 [:] s State + Fe... 107 // Widths of matrices.
108 int A_width, int B_width)
Function overhead 1786 1762 [:] [:] s Kernel dis... 109~ {
110 // Local storage for a block of input matrices A and B
. 111 _ local float A local[BLOCK SIZE][BLOCK_SIZE];
matrix_mult.cl:111 (A_local) ;] 2] 64] = Local memo... 112 ~ local float B local[BLOCK SIZE][BLOCK SIZE];
113
matrix_mult.c1:112 (B_local) a a 256 [:] s Local memo... 114 // Block index
¥ o Source Line 848 3605 17) v v
Details x

matrix mult.cl:112 (B_local):

= Local memory: Optimal.
equested size 16384 byltes (rounded up to nearest power of 2), implemented size 49152 bytes, replicated 3 times total, stall-free, 4 reads and 4 writes. Additional information:
- Replicated 3 times to efficiently support multiple simultaneous workgroups. This replication resulted in no increase in actual block RAM usage.
- Banked on lowest dimension into 4 separate banks (this is a good thing).

Programmable Solutions Group

Matrix Multiplication Design Example:
HTML System Viewer - Local Memory

= Looking at load unit for B_local
— 2048 Bits, Pipelined, Stall-free

System viewer ma"ix_mu".cl A
the Loop.
W Control g‘.\{emory 146 // As a result of the swap of indices above, memory accesses to A
147 // A_local and B_local are very efficient because each loop
iteration

148 // accesses consecutive elements. This can be seen by unrolling the
149 // loop and analyzing the regions that are loaded:
150 // A _local[local y][@..BLOCK_SIZE-1] and
151 // B_local[local_x][8..BLOCK_SIZE-1]
152 #pragma unroll

Width: 2048 bits 153 for (int k = @; k < BLOCK_SIZE; ++k)

Type: Pipelinec B_local [4] (x3) 154 -
155 running_sum += A_local[local_y][k] * B_local[local_x][k];
156
157

N 158 // Wait for the block to be fully consumed before loading the next

Additional Info: Part of a 159 // block.

stall-free cluster. 160 barrier(CLK_LOCAL_MEM_FENCE);
161 ¥
162
163 // Store result in matrix C
164 C[get_global id(1) * get global size(®) + get global id(@)] =

running_sum;

165 } v
166

Programmable Solutions Group

Exercise 5
Local Memory Optimizations

Optimizing Memory Accesses Agenda

= Private memory

Private Memory Implemented as Registers

Private variables and arrays can be implemented as: {_kernel void MyKernel (..)
— On-chip memory systems. __private float pDatal4];

— Pipeline registers or FIFOs }

Unless the private variables match a register conversion rule, the result is
equivalent to local memory

— All tradeoffs, reports, and discussion about local memory applies

Scalar variables (float, int, char, etc.) almost always implemented in registers

Aggregate types (arrays, struct and vectors) can be converted to registers

— If members accessed can be determined at compile-time.

Private Memory Implemented in RAM

= |[f accesses are not constant, memory implemented in on-chip RAM
— temp is implemented in RAM

— loads/stores are used to access data

kernel void foo(global int* restrict global int* restrict B) {
int [201;
for (unsigned = 0; 1 < 20; i++) {
temp([i]]|= A[i];
}
for(unsigned © = 0; i < 20; i++) {

B[i] =[temp[i]]+[temp[N—l—i]a

}
}

Programmable Solutions Group

ﬂnmo .zn

Private Memory Implemented as Registers
(Constant access)

= Accesses are all constant

— Each element of temp becomes a register

int temp[20];
#pragma unroll

for (unsigned i = 0; i < 20; i++)
temp[i] |= A[i];

#pragma unroll

for (unsigned i = 0; i < 20; i++)
B[i] =(temp[i]] +(temp[N-1-i]; |

int temp[20];

#pragma unroll

for (unsigned i = 0; i < 20; i++)
temp[i] = A[i];

B[1i] 4ﬁtemp[0] + temp[l] + temp[2] + temp[3] + temp[4];]

Programmable Solutions Group

Private Memory Implemented as Registers (Size
Requirement)

= Private memory of size < 64 bytes always converted to registers
— Compiler heuristic

— temp becomes a 160-bit register

— Shift operations are used to extract the 32-bit data to operate on

kernel void foo(global int* restrict A, global int* restrict B)

{

for(unsigned 1 = 0; 1 < 5; i++) {
temp[i] = A[i];

}

for(unsigned 1 = 0; i < 5; i++) {

B[i] = temp[i] + temp[N-1-i];
}

Programmable Solutions Group

Private Memory Describing Shift Registers

= Shift register inferred
LJ_J_<||||%||||£$<||||@||||£$J<datam |

<data Sui] VaVaV. VaVaV. Vava

pixel t sr[2*W+3];
while (keep going) {
// Shift data in

#pragma unroll . .

for (int i=1; i<2*W+3; ++i) Shift Operation
sr[i] = sr[i-1];

sr[0] = data in;

// Tap output data '
data out ={sr[0], sr[1], sr[21, Access to constant locations

sr[W], sr[W+1l], sr[W+2],
Sr[2*W], sr[2*W+1l], sr[2*W+2]}

Programmable Solutions Group (intel. .

Shift Register Implementation

Inference result from access pattern

Each element of the shift register is converted from memory to register

All registers are then clustered together into 1 or several shift registers

Shift registers can be backed by any array shape

— The compiler will infer shift registers after the arrays are broken into individual
elements

Shift register has frequent accesses

= |f conversion to shift registers fails, due to the coding style, a large number of
loads and stores to memory will be instantiated

Area Report: Private Variables Implemented as
Registers

™ Private Varlables implemented aS Iv.:Er‘r‘:elde]-ay_:i:uE-l:iSIEE]:: restrict src, global * restrict dst, Ny {
registers annotated

(k = 8; k < FF_SIZE; ++k) {
delay fifo[k] = k;

Private Variable: mplemented using registers of th
- 'delay_fifo' 304 4528 0 0 < following size:
(not_shift_reg.cl:3) - 64 registers of width 32 and de

Programmable Solutions Group (intel' . 222

Area Report: Private Variables Implemented as Shift
Registers

* Private variables implemented as shift
reg|SterS reported kernel t(global * restrict src, global * restrict dst,

sr[FF_SIZE_DECL];

— See details about the individual registers
used to implement the whole array

« < FF_SIZE; ++k) {

23] + sr[13] + sr[1823] + sr[FF_SIZE - 3];

Access patterns
determines implementation

< FF_SIZE - 1; ++k} {

sr[FF_SIZE - !
« Implemented as a shift register with 5 or
fewer tap points. This is a very efficient
storage type.
Implemented using registers of the
following sizes:
- 1 register of width 15 and depth 1
- 3 registers of width 32 and depth 1
- 1 register of width 32 and depth 10
- 1 register of width 32 and depth 14
- 1 register of width 32 and depth 1001
- 1 register of width 32 and depth 15360

Private Variable:
'St (shift_reg.cl5) 168 363 36 0

Programmable Solutions Group

intel‘ . 223

Area Report: Private Variables Implemented as
Barrel Shifters I
= Arrays that are indexed dynamically may be for (it £ = 03 § < s 440 €

J:::[lz:] += in[@];
iImplemented as a high-overhead barrel shifters inl

1];

* restrict in,

= Warning issued

— Static indexing would yield much better results

|~Trplemented as a barrel shifter with

< registers due to dynamic indexing. This

is a high overhead storage type. If

“=pessible_change to compile-time__=

known indexing. st of
accessing this variable is shown on the
lines where the accesses occur.
Implemented using registers of the
following size:
- 3 registers of width 32 and depth 4

(depth was increased by a factor of 4
due to a loop initiation interval of 4.)

Private Variable:

- %' (barrel_shifter.cl:4) 53 581 0 0

* restrict out) {

barrel_shifter.cl:8

43

barrel_shifter.cl:9

46

2752

4879

—

Area Report: Private Variables Implemented as

ROM

» Private large constant array can be implemented as ROM

= ROMs are replicated for each read

= Resources used are shown on lines where accesses occur

LEs

FFs

RAMs

DSPs

[-] Blocko (Logic: 1%)

2176 (0%)

3972 (0%)

276 (11%)

0 (0%)

State

32

32

0

rom.cl:4

0

0

rom.cl:s

16

0

T
5

128

rom.cl:é

1220

2022

14

No Source Line

908

1918

6

Programmable Solutions Group

Two accesses to
private constant tb1[]

Data Type Optimizations

Floating-Point Optimizations

Apply to half, float and double data types

AOC has the ability to optionally optimize for floating-point operations

— Optimizations will cause small differences in floating-point results
— Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

AQOC floating-point optimizations:
— Tree Balancing

— Reducing Rounding Operations

Other optimizations

— Floating-point vs. fixed-point representations

— Use a device with hard floating point

Tree-Balancing

= Floating-point operations are not associative
— Rounding after each operation affects the outcome
— ie. ((a+b) + ¢) = (a+(b+c))

= By default the compiler doesn’t reorder floating-point operations

— May creates an imbalance in a pipeline, costs latency and possibly area

= Manually enable compiler to balance operations

— For example, create a tree of floating-point additions in SGEMM, rather than a chain
— Use -fp-relaxed=true flag when calling aoc

Arithmetic Order of Operation Rules

= Strict order of operation rules apply in OpenCL™
= By default, AOC honors those rules
— May lead to long, unbalanced, slower, less-efficient floating-point operations

= Example: Result = (((A * B) + C) + (D * E)) + (F * G)

D | E F G

“

Result |

A
B

Y
Long Vine of Operations

. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos
Programmable Solutions Group p per go are trademarl ppl u Yy permissior r

i@ . 229

Tree Balancing

= Allow AOC to reorder operations to convert into a tree pipeline structure
— Possibly affects the precision, not consistent with IEEE 754
= Enable AOC tree balancing with —-fp-relaxed option

— Design needs to tolerate the small differences in floating-point results

aoc -—fp-relaxed kkernel_file>.cl

C. Result = (((A * B) + C) + (D * E)) + (F * G)

Result \

A
B
D
E.
F.
G

Programmable Solutions Group (intel' . 230

Same Operation, Balanced Tree Implementation

Tree Balancing and Resource Savings

Rounding Operations

= For a series of floating-point operations, IEEE 754 require multiple rounding
operation

= Rounding can require significant amount of hardware resources

» Fused floating-point operation
— Perform only one round at the end of the tree of the floating-point operations
— Leads to more accurate results

— Other processor architectures support certain fused instructions such as fused
multiply and accumulate (FMAC)

— AOC can fuse any combination of floating-point operators

Reducing Rounding Operations

= AOC will not reduce rounding operations by default

= Enable AOC rounding reduction with -fpc option

— Not IEEE 754 compliant

— Use when program can tolerate these differences in floating-point results

aoc | -fpc

<kernel_file>.cl

1. Removes floating-point rounding operations whenever possible
— Round floating-point operation only once at the end of the tree of operations

— Appliesto *, +, and -

2. Carry additional mantissa bits to maintain precision
— Carries additional bits through calculations, removed at the end of the tree of operations

3. Changes rounding mode to round toward zero

Programmable Solutions Group

ﬂnmo .2%

Implementing Arbitrary Precision Integers

= |nclude the library in your .cl file #inciude "ihc apint.n"

= Aoc run with the option -1 SINTELFPGAOCLSDKROOT/include/kernel headers

#include "ihc apint.h"

__kernel void fixed point add(global const unsigned int * restrict a,
__global const unsigned int * restrict b,
__global unsigned int * restrict result)

size t gid = get global id(0);
ap uintl0 temp, temp2;
ap uint20 temp result;

Datatypes available are ap_uint<bit size> and
ap int <bit size>

temp = algid]; _temp2 = blgid]; Make sure to cast one of the arguments to account
temp_result =] ((int20_t)a) ’*-—“ for bit growth to prevent overflow

result[gid] = temp result;

Programmable Solutions Group (intel' . 234

Summary

NDRange kernel attribute customizes Compute Unit architecture

Effective Loop Pipelining

= Communication through Channels / Pipes

Memory Optimizations

Data Type Considerations

References

» |ntel® OpenCL™ collateral (www.altera.com/OpenCL)

— White papers

— Demos and Design Examples

— Intel FPGA SDK for OpenCL Getting Started Guide

— Intel FPGA SDK for OpenCL Programming Guide
— Intel FPGA SDK for OpenCL Best Practices Guide
— Free Intel FPGA OpenCL Online Trainings

= Khronos* Group OpenCL Page
= OpenCL 1.2 Reference Card

— https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

OpenCL and the OpenCL logo are trademarks of Apple |

http://www.altera.com/OpenCL
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

Follow-on Training

» Single-Threaded vs. Multi-Threaded Kernels online training

= Building Custom Platforms online training

https://www.altera.com/support/training/course.html?courseCode=OOPNCLKERN
https://www.altera.com/support/training/course.html?courseCode=OOPNCLCSTBOARD

Many Ways to Learn

Al REE Ay REE
Ways .- ~30 pyp 2¥alla
~, . ail mi le
4 inyt, ab/e N Nuteg on
YOUT €s lon Eng/iSh 00 topje 9
Ube Videog , C, so Js
’ apanes
e

Videos

Instructor-led Training

Programmable Solutions Group *Other names and brands may be claimed as the property of others

http://www.youtube.com/user/alteracorp
http://www.altera.com/training/online
http://wl.altera.com/servlets/searchclass?locations=Virtual Classroom
http://www.altera.com/training/ilt
http://www.altera.com/training
http://www.altera.com/training

Instructor-Led and Virtual Training Curriculum

Quartus® | R, .
Prime

Introduction Software: Qua_rtus’é' :
to Foundation Prime Quartus® . Foundation Classes
VHDL Software: Software
AT'”;'”Q Debug l:, Advanced Follow-On
............. Introduction nalysis Classes
to Intel Quartus |:| Specialized Classes
Verilog Pro Edition
fo'r:z?;:?nd i, T Attt . Possible Future Classes
-------------- Design i R i X
Advanced H - Available as a Virtual Class|
Timing S H [
Timing '
Closure ; ' * Recommended
Analysis ; progression
I
|

Introduction
10— N A Each course is 1 day long

! e B ' 1 Platform [/ A, 5 1d
i : : [Designer except for Optimizing
H I ! ™
1| Advanced |i!| Advanced |!! A'fl"ffnced ____________ | partial OpenCL™ course
!l vHDL |1 verilog i DaA"”" Reconfig-
H i " esigner uration
! i i
e L
------------- [ieieleeteleeteteeteteiy P elteleelelstettetee
: ildi : : : Building
[y ity HIH 1 Creating PCI 1| Building ' i i ' lildin
1 ™ " e ; £ _ E ™ 1| Interfaces | i | DSP Builder {! Gigabit
; °§,§g‘;‘; fo(rm i1} introduction E : trtl-rl?g;jrt(l:_tcle?/ZI E : : : : Li:lf;ejssing i lwith Arria® 10 | 1| Advanced | Interfaces in
: parallel i1/toOpenCL™Y i1 g b s ! '} Designing | | Dpesigning |! Advanced {1 FPGAS 1| High-Speed {: 1| Blockset {: 28-nm
H f | H A | ' i ! i | Optimization § ! T I | | Device:
' Software i or Inte 11l with Intel ' : W'fh an ' with the ; w’i)th Siratind : : ransceiver : : : evices
! | Programmers] !i| FPGAS e FPGAs ! 1| ARM"-based {1 Nios®ll | !
v 1 I L il socFPGA | | Processor I 10 HyperFlex§ |
Lo ; ------ ! E ; E Architecture | |
i b | H RN ASE , [, At
E 1 E Develoni 1 E High-Level E i — H ! (i 1
i)
1| optimizing |1 || Cuctom. {1 | Synthesis | | sottware for] | [2eveoPing §il pyoeriex |
| opencL™ | ! W '] Advanced | ' i | Software for { ! '
i pen t il opencL™ i i ' anArRve 1! : ! i
il (2days) {! i 11 | Optimization | | ! i | theNiosIl {1 1
i o BSP i ! N Techniquesl! 1| basedSoC {! | o cessor 1! !
: i i dussy T H : :
b ' | . '

*Other names and brands may be claimed as the property of others

Programmable Solutions Group

Intel® FPGA Technical Support Resources

SUPPORT

= |ntel FPGA Technology Landing Pages

— Single page collecting resources related to
particular FPGA topics and applications

= |ntel® FPGA Technical Training materials

= Intel Programmable Solutions Group
(PSG) community forum for self-help

Intel PSG wiki site for design examples
Intel PSG Knowledge Base Solutions

Intel PSG Self Servicing License Center

Please contact your sales and field
support if you need further assistance

https://www.altera.com/support/support-resources.html
https://www.altera.com/support/training/curricula.html
https://www.altera.com/support/support-resources/communities.html
http://www.alterawiki.com/wiki/Main_Page
https://www.altera.com/bin/search?q=&client=www&output=xml_no_dtd&proxystylesheet=www&sort=date:D:L:d1&oe=UTF-8&ie=UTF-8&ud=1&access=p&entqr=3&entsp=a&entqrm=0&site=www_spt_kdb&filter=0&partialfields=(type:how-to|type:errata|type:answers)&tlen=200&rc=1
https://mysupport.altera.com/AlteraLicensing/license/index.html

Exercise 4
Optimizing the Hough Transform

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system manufacturer
or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria,
Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel
Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

®

(l nte,' experience

what's inside”

