
Performance Evaluation of

OpenCL Standard Support

(and Beyond)

Tyler Sorensen, Princeton University

Sreepathi Pai, University of Rochester

Alastair F. Donaldson, Imperial College London

IWOCL 2019



Background

●IrGL: DSL for (Irregular) Graph Analytic Kernels

– Wrote a compiler from IrGL to CUDA

– Fastest graph kernels

– Pai and Pingali, “A compiler for throughput 
optimization of graph algorithms on GPUs”, 
OOPSLA 2016

●Teamed up with Tyler and Ally to target OpenCL



IrGL Key Insight

●Graph algorithms suffer 3 bottlenecks

●Need 3 key optimizations for high performance

– Iteration Outlining

– Nested Parallelism (not OpenCL NP)

– Cooperative Conversion



Problem: CPU—GPU Launch

bfs

bfs

bfs

bfs

Time

CPU GPU

launch

Idling

Idling

Idling

●Most graph algorithms 

are iterative

– Repeat until fixpoint

●If time per iteration is 

small (average ~20us 

for BFS), launch 

throughput can’t keep 

up



Optimization #1: Iteration Outlining

●Compiler generates a 

control kernel that 

“launches” child kernels

– Actually inlines them

●Need a global barrier 

between “kernel 

invocations” (now 

function calls)

OpenCL Device-side 

GPU

bfs

bfs

bfs

bfs

Time

Control Kernel

CPU
launch



Problem: Load Imbalance
Worklist

Threads

●Graph algorithms 

usually two parallel

nested loops

– Outer loop over 
nodes

– Inner loop over 
edges of a node

●Graph edge distribution 

can be very skewed



Optimization #2: Nested Parallelism

Work-group (WG) Scheduling Fine-grained (FG) Scheduling

Synchronization
Barriers



NP: Multiple Schedulers

Work-group (WG) + Finegrained (FG) Scheduling

Use Work-group (WG) for high-degree nodes

Use fine-grained (FG) for low-degree nodes



Implementing IrGL NP in OCL

●Support any combination of three schedulers

– workgroup (wg)

– subgroup (sg)

– finegrained (fg)

●Workgroup and Finegrained schedulers require:

– local memory and workgroup barriers

●Subgroup scheduler requires:

subgroup barriers and reductions



Optimization #3:

Cooperative Conversion

atomic_add(..., 1)

Workitem Workitem

Write

atomic_add(..., 5)



if(edge.dst.level == INF)
Worklist_push(edge.dst)

...

Time

Dynamic aggregation problem



Aggregate across workitems
if(edge.dst.level == INF)

Worklist_push(edge.dst)

...

Time



Implementing Coop-Conv in OCL

●Supports aggregation:

– within a workitem

– across a subgroup

– across all workitems of a workgroup

●Workitems use prefix scans for aggregation, 

requiring barriers

– Unlike CUDA, even subgroup aggregation 
requires barriers – OCL does not support 



GPUs We Used

Vendor GPU OpenCL version

ARM Mali 4 1.2

NVIDIA GTX 1080 1.2

Quadro M4000 1.2

AMD R9 2.0

Intel HD 5500 2.0

Iris 6100 2.0



Portable C11-style Atomics (OCL2)

●Required for: coop-conv, wg, and oitergb

– Supported by Intel and AMD (already OpenCL 
2.0)

●NVIDIA: Hardware support available, so just use 

PTX intrinsics

●ARM: Use memory fences and hope for the best

– Verify correctness using application test suites



Portable subgroups (OCL2.1)

●Required for:

– coop-conv,

– nested parallelism (sg)

●NVIDIA: Use PTX intrinsics

●Intel and AMD: Use vendor-specific extensions

– Intel subgroup sizes can vary per kernel!

●ARM: Assume subgroup size of 1



Portable global barriers (OCL-FP)

●Required for: Iteration Outlining (oitergb)

●Assume occupancy-bound architecture

●Kernel includes a prologue to detect how many 

workgroups are running (can undercount)

– All workgroups with ID greater than this count 
exit

●Details in: Sorensen et al., “Portable inter-

workgroup barrier synchronisation for GPUs”, 



Experimental Setup

●17 graph algorithms

●3 graph inputs: Road, Random, R-MAT

●6 GPUs, from 4 vendors (NVIDIA, Intel, ARM and 

AMD)



Portability of Optimisations



Portability of Optimisations (contd.)

●All optimisations required to achieve speedup for 

some fraction of architecture + benchmark + input 

combinations

●Optimisations are not NVIDIA-specific



OpenCL Speedup Classes



Conclusion

●Newer OpenCL features lead to better 

performance

●Best performance obtained when OCL-FP 

features are used – though these are not yet 

supported



Thank you!

●For more details, see Tyler’s PhD Thesis

sree@cs.rochester.edu
https://cs.rochester.edu/~sree

mailto:sree@cs.rochester.edu

