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Fast Fourier Transform (FFT) is a well-known algorithm that calculates the discrete Fourier
Transform of discrete data, converting from temporal or spatial domain into frequency domain.
It has a wide variety of applications in engineering, science and technology as the complexity of
Fourier Transform is lowered from O(N2) to O(NlogN), where N is the data size. This often
leads to an order of magnitude computation reduction for large data sizes.
This work illustrates how to accelerate the FFT algorithm on Qualcomm’s AdrenoTM GPUs by
using OpenCLTM. We show that decent FFT perf with good power and energy efficiency can be
achieved on Adreno GPUs by using various optimization techniques, such as on-chip memory,
improved memory access patterns, parameter tuning, and fp16 data type.
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The workgroup size of FFT1D
kernel is set to min( MAX_WG_SIZE,
width).
For the transpose kernel, we tune
the optimal workgroup for various
versions of our algorithm for
different Adreno GPUs. Significant
perf gains can be achieved by tuning
the workgroup size and shape.FFT on GPU

▪ 2D vs 1D FFT. We perform the 2D complex FFT by taking advantage of the separable 
nature of FFT. Each stage in figure below corresponds to a separate OpenCL kernel.
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▪ Naïve implementation

▪ Workgroup size/shape tuning
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▪ Perf comparison on Adreno A640

Four approaches are implemented and optimized
following the above optimization steps. We
measure the actual kernel execution times and do
not include the setup times at host.
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➢ Using local memory instead of global
memory as the intermediate scratchpad
improves the perf of Row-wise FFT1D by
~50%.

➢ Using images instead of buffers improves
Row-wise FFT1D perf by ~10%. The
improvement is relatively minor as the bit-
reversal on input indices leads to poor cache-
locality. However, the perf of the transpose
kernels improves considerably by ~50%
thanks to good cache locality. The overall
FFT2D perf is improved by ~20%.

➢ Using fp16 data type yields an average
improvement of up to 30% for the overall
FFT2D. It improves even more with larger
input data sizes, as FP16 effectively reduces
the overall data traffic by ~50% and improves
bandwidth utilization. We highly recommend
fp16 if precision loss is acceptable.

▪ Perf comparison across devices
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Performance across devices

A530 A630 A640

Figure alongside shows the FFT perf across 3 
different Adreno devices: A530, A630, and 
A640.
The execution time reported here is for local 
memory-based algorithm using texture for 
input and output.

Optimizing FFT2D for Adreno GPU

▪ Use local memory for scratchpad. Use fast, on-chip local memory to store the intermediate
results of 1D FFT computations in each workgroup. As compared with global memory, local
memory has shorter latency and better power efficiency, which is important for mobile
devices.

▪ Load matrices as image object. For both FFT1D and transpose kernels, input matrices can
be loaded into GPU for computation through read-only images. CL_RG format is used
instead of CL_RGBA because though each work-item reads four fp32 (128b) data for
butterfly computation, they are adjacent only in pairs, i.e., two 64b data cannot be loaded in
one transaction. While writing back FFT output, each work-item can write 4xfp32 (128b)
values in one transaction into an image with CL_RGBA format.

▪ Use fp16 instead of fp32. When some loss in precision is acceptable, using fp16 can 
provide twice the ALU capacity (measured in flops) on Adreno GPU. 
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Fig. 2: Example 1D DIT FFT of length 8

Row-wise FFT
➢ Compute FFT using Radix-2 Cooley-Tukey Decimation in Time (DIT) algorithm.
➢ Input matrix stored in global memory as an OpenCL buffer object. Each element is a 

complex number stored as two floats. Launch kernel with local size 
(min(MAX_WG_SIZE, width/2), 1) and global size (min(MAX_WG_SIZE, width/2), 
height). Each workgroup computes 1D FFT of one row.

➢ Total log2(FFT_LEN) number of iterations are needed for Radix2 FFT. Intermediate 
result is stored in a scratch-pad. The naïve implementation uses a buffer in global 
memory for this purpose. Later we will use local memory.

➢ Data reads in the first iteration cannot be optimally vectorized because of bit reversal. 
Consequently, vectorization can only be up to 64 bits. The writes can be vectorized 
optimally to 128 bits. For the rest of the iterations, we can fully vectorize reads by 
packing 128 bits in every read and write.

➢ Global memory barrier needed after every iteration.

Fig. 1: Computing 2D FFT by separating into 1D row-wise and column-wise FFTs

The transpose kernel reads data from the read-only CL_RGBA image, which is the output of
the previous row-wise FFT stage, and writes output to a CL_RG image, which is then
processed at the second FFT stage.

Transpose
➢ Each work-item reads 2x2 grid of complex numbers by 

two vectorized 128-bit reads. Writes 2x2 grid by two 
vectorized 128-bit writes.

➢ Performed out-of-place, so no synchronization needed.

2x2 grid per 
workitem

2 complex numbers i.e. 128 bits

Fig. 3: Transpose kernel overview
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Fig. 4: Input and output image formats for different kernel stages 
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▪ Power measurement for global and local memory versions

power 
level freq, MHz voltage, V GPU, mW CPU, mW CX, mW MX, mW DDR, mW Overall, mW

0 604 0.9227 62 53 309 65 61 550
1 500 0.7891 42 51 192 40 54 379
2 315 0.6505 28 54 174 40 47 343
3 214 0.6242 26 56 162 38 49 331

power 
level freq, MHz voltage, V GPU, mW CPU, mW CX, mW MX, mW DDR, mW Overall, mW

0 604 0.9227 89 56 321 71 90 627
1 500 0.7891 60 52 199 43 80 434
2 315 0.6505 40 62 181 43 72 398
3 214 0.6242 39 61 168 42 77 387

Table 1: Power consumption comparison for global memory (buffer-based) and local memory (buffer-based) 
versions of FFT2D. GPU power consumption decreases by 30% when using local memory as intermediate 

scratch-pad. Above data collected on Adreno 530 on Qualcomm Snapdragon 820

Using local memory

Using global memory

This is an extension and update of work previously done by Xujie Zhang, Vijay Ganugapati, 
Rotem Aviv, and Jay Yun on optimization of 2D FFT using local memory.
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