AMDZ1

Profiling OpenCL™ Kernels Using Wavefront
Occupancy

1111111111

AMDZ\

Existing profiling techniques and motivation
AGENDA for improvements to OpenCL tools

GCN and Wavefront Occupancy

Applying Wavefront occupancy in Radeon GPU
Profiler

Future Work

2 IWOCL 2019

AMDZ\

Existing Profiling Techniques for OpenCL Developers

 Performance counters - Aggregate data — no indication of what happened in the
kernel over time
e Limitation — No Workgroup Scheduling across shader engines.
* Limitation — Cannot see stalls in kernels waiting for memory or correlate to source

IWOCL 2019 Source: CodeXL

AMDZ\

Existing Profiling Techniques for OpenCL Developers

Timestamps with APl interception don’t provide visibility into work the driver did.
* Limitation - Barriers inserted to flush caches
e Cause - Applications scheduling consecutive kernels with data dependencies

* Limitation - Dispatches batched by driver into command buffers
* Cause - Excessive synchronization like clFinish() in applications

—|Host Thread 11476

OpenCL

IWOCL 2019

Source: CodeXL

AMDZ\

Our Design Goals for Improved OpenCL Tools

 Enable new optimizations for OpenCL applications
 Make optimization agnhostic across architecture generations

* Needs to be applicable to graphics and compute workloads

* Asingle dispatch like compute
A game where multiple shaders are in flight at any point in time

5 IWOCL 2019

AMDZ\

Existing profiling techniques and motivation
AGENDA for improvements to OpenCL tools

GCN and defining Wavefront Occupancy

Applying Wavefront occupancy in Radeon GPU
Profiler

Future Work

6 IWOCL 2019

AMDZ\

GCN Architecture

X Shader Engines per Chip with Y Compute Units per Shader Engine

Shader Engine

Shader Engine

Shader Engine

Shader Engine

1 i

u_ u_

-'__

-'_ I 111
CU——

-'__

m
"

__ _._

U-_U__ _

l_- l__ l—_
|

u

.i.@nnl- .LI@nu_-_-

Iil@nn"nu I..@nnn

w-_— w-_— c-_—
[—l—
]

IWOCL 2019

AMDZ\

GCN Architecture

X Shader Engines per Chip with Y Compute Units per Shader Engine

For OpenCL developers

Shader Engine

Shader Engine

Shader Engine

5 _- & __ @ __

IWOCL 2019

AMDZ\

GCN Compute Unit

4 SIMD Units per CU

BRANCH UNIT

 »

SIMD

16-LANE VECTOR ALU

64KB VGPR MEMORY

IWOCL 2019

AMDZ\

What is wavefront occupancy?
8 Wave Slots Per SIMD on RX480

8 Waves Per SIMD 100%

4 Waves Per SIMD 50%

2 Waves Per SIMD

25%

1 Wave Per SIMD 12.5%

Measure of how close a SIMD is to its maximum wavefront capacity at a point in time

IWOCL 2019

AMDZ\

How do we calculate Wavefront Occupancy

Hardware support in AMD GCN compute units emits event tokens to GPU memory

IRRRRRESENNEN NRREE I swu VAU VAW HH
. VGPR VGPR ST WGPR VGPR T
111
>
Time
Tokens gathered across compute units

T e

11 IWOCL 2019

Wavefront Occupancy

3 .II.|.. 1 I||| | I I I

AMDZ\

T Rt
|

C
= HHRLTT II N I
' ||||,mul ||| ’ .um Junn .,|, ,| .ml . |||m,.|| .
JRSiaieiies e R ey ' lllllll 'l "‘ ll -
umn" TS -|l M "u mmulll

Bsso se1 stz
High utilization of GPU ~ 80% Low utilization of GPU ~ 30%

 Four shader engines doing OpenCL ray tracing

 Build a histogram showing how many waves were active in a time interval
 Now get an idea of utilization of a GPU at any point in time

e However — How do we correlate this to a API call in OpenCL ?

12 IWOCL 2019

Correlating wave fronts to APl information

13 IWOCL 2019

e User mode driver inserts data into hardware
generated trace

* Allows adding API specific semantics
 Example — OpenCL kernel names

AMDZ\

UserData -
Dispatch

UserData —
Barrier

https://github.com/GPUOpen-Drivers/pal

Visualizing Wavefront Occupancy of OpenCL Applications

File Help

4 EVENTS

Wavefront occupancy Event timing Pipeline state
ns

Zoom to selection Resetzoom | Qp 68 clEnqueueNDRangeKernel("intersect_mai 5

Color by shader engine
Launched from Queue index 1

0.000 ps 1,875.000 ps 3,750.000 s ‘ 9,375.000 pis 11,250.000 ps 13,125.000 ps 15,000.000 ps 16,875.000 ps 18,750.000 ps 20,625.000 pis 22,500.{

siieyap apiH

‘HII\\\H|\\HIHH|IHIIIIH|I\\HII\\‘IHHHH‘HIHHH|HIH IH|IHHIIH‘IIIH\I\\‘\\IIHIII|HIIHHI|H\IH\\\|\HHI\H|IHHIIH|IIH\II\\‘\II\HIH‘HIIHHI|\HIHHI|HHII AARRRARARAARANAAANY Start time 13,877.355 s
100% | End time 16,711,509 ps

. Duration 2,834.155 ps
75% | work duration 2,834.155 pis

50%

5% | Wavefronts

0% AT
GCN wavefront distribution:

BWiseo se1 sz [MsE3

. L (
Duration filter . Total wavefronts 15,360
2 H 12 14| |3032 Total threads 983,040
I Avg threads per wavefront 64

it tt

Color by event

API Shader VGPR LDS Occupancy
cs 60 1024 4/10

View durations and load View Resource Usage
balancing across SEs

68 clEnqueueNDRangeKernel("intersect_main") = Selection duration: 2,834.155 us | 23,178,170 us

See how busy the GPU is

Generated unique colors per event.

14 IWOCL 2019

AMDZ\

Visualizing Wavefront Occupancy of Vulkan Applications

See how busy the GPU is

15 IWOCL 2019

Visualizing Wavefront Occupancy of Vulkan Applications

Pipeline state

16

IWOCL 2019

saydein

23ndwiod susy

‘Wavefrent occupancy Event timing

Color by API shader stage

Hvs TCS & TES es [MFs

Color by command buffer

Generated unique colors per command buffer.

GCN shader stages

cs

Event filter

1186

i
Hilm =

Zoom to selection

Reset zoom

Duration filter

1203 1215 J1240 N e
1204 1216 1 '..

1210 1217 B]
1211 1218

See how busy the GPU is

v

484 vkCmdDrawIndexed(2397, 3, 0, 884792 £

Launched from Queue index 0

sjie3sp 8

Start time 4,590,035 clk
End time 4,669,138 clk
Duration 79,103 clk
Work duration 79,103 clk
Hardware context 5

Wavefronts

GCN wavefront distribution:

49 (41.18%)
70 (58.82%)

Total wavefronts 119
Total threads 5,658

GCN shader stage timeline

API Shader VGPR SGPR LDS QOccupancy
39 (40) 29 (32) - 6/ 10

36 (48) - 6/10

Workload

Shader stages

Input primitives

Shaded vertices

Shaded control points

Tessellated vertices

Shaded primitives -
Shaded expanded vertices 3,057
Shaded pixels 2,601

AMDZ\

AMDZ\

Visualizing Wavefront Occupancy of Vulkan Applications

H|||||| 1187 1204 1216
1072 1210 1217
1211 1218
1212

See how busy the GPU is

17 IWOCL 2019

AMDZ\

Visualizing Wavefront Occupancy of Vulkan Applications

olor by API shader stage ader stage oom to selectio Reset zoo + 184 vkCmdDrawIndexed(2397, 3, 0, 884792

Launched from Queue index 0

sjie3ap op

Start time 4,590,035 clk
End time 4,669,138 clk
Duration 79,103 clk

g l Work duration 79,103 clk
Hardware context 5

‘ ! ‘ Wavefronts

GCN wavefront distribution:

49 (41.18%)
70 (58.82%)

CS wavefronts

Total wavefronts 119
Total threads 5,658

olor by command buffe e e Duration filte Search.. P GCN shader stage timeline

1236 1240 1356 1398 1404 1413 1416 o ———
‘—
1271 77

API Shader VGPR QOccupancy

6/10

6/10

Workload

Shader stages

TCS TES

Input primitives

Shaded vertices

Shaded control points

Tessellated vertices

Shaded primitives

Shaded expanded vertices 3,057
Shaded pixels 2,601

See how busy the GPU is

18 IWOCL 2019

Understanding Application and Driver Interaction in OpenCL

* Application driver interaction visibility enabled by driver
instrumentation and hardware support

* Driver adding Barriers when profiling enabled serializing dispatches

Barrier type and reason

Caches

Barrier Reason for barrier

type

Event Duration Drain Stall§ Invalidated Flushed
Humbers Time

1 1,124 ns 753 ns Profiling control,

17,949 ns 745 ns Profiling contral,
12,5630 ns 726 ns Prafiling contral,
10,324 ns 730 ns Profiling contral,

10,334 ns 801ns Profiling control,

1,266 ns 739 ns Profiling contral,

19 IWOCL 2019

AMDZ\

AMDZ\

Understanding Application and Driver Interaction in OpenCL

 Enabled by driver instrumentation and hardware support

A command buffer is a batch of dispatches

* View grouping of OpenCL dispatches into command buffers

 Example: Find the cost of clFlush()
* View how long DMA takes and overlap

Command buffer
su bm iSSion 10 ns 2,000,000 ns 3,000,000 ns 000,000 ns 5,000,000 ns 6,000,000 ns

(ARARERR
Computd queue Command buffer
execution

Gt 1] LommandoLTier 842] CommandBuffer 343 =ZI::--'-'-'-'-.=-'::E-..“
o 1] Lommanaouie 342] CommandBuffer _ [
A

[B —I*Ilj CommandBuffer

Queue clearing as work executes on GPU

20 IWOCL 2019 TI me

AMDZ\

Understanding Application and Driver Interaction in OpenCL

 Enabled by driver instrumentation and hardware support
* Difference between “Real” and “Theoretical Occupancy”

+J= : queueNDRangeKerne

Wavefront occupancy ~ 50%

Theoretical occupancy ~ 100%

IWOCL 2019

AMDZ\

Existing profiling techniques and motivation
AGENDA for improvements to OpenCL tools

GCN and defining Wavefront Occupancy

Applying Wavefront occupancy in Radeon GPU
Profiler

Future Work

22 IWOCL 2019

AMDZ\

Radeon GPU Profiler

— Visualizes GPU workloads to e o T T
identify performance bottlenecks

— Bridge the gap between explicit | — B
APls and GCN

— Built-in, hardware thread-tracing, |
allowing deep inspection of GPU - —
workloads.

— Linux® and Windows®
— Vulkan®, DirectX® 12 and OpenCL

23 IWOCL 2019

How does it work?

Launch the target application

(RGP support is built directly into the production driver

B _

¥ Baikal settings

Use wsad keys to move

Q/E to climb/descent

Mouse+RMB to look around

F1 to hide/show GUI

Device vendor: Advanced Micro Devices, Inc.
Device name: gfx9@@

OpenCL: 2841.5 (PAL, HSAIL)

Resolution: 1280x768

Scene: orig.objm

Unique triangles: 32
Number of instances: @

5 GI bounces
0, 000 Aperture(mm)
35, 000 Focal length{mm)
1,000 Focus distance(m)
Color ¥ | Output

Number of samples: 7117

Frame time 17,200 ms/frame (58.1 FPS)
Renderer performance 57.154 Msamples/s
Eye: x = 0,000 y = 1,000 z = 3,000

At x = 0,000 y = 1,000 z = 2,000

Start benchmark

Start RT benchmark

IWOCL 2019

AMDZ1

Launch Developer Panel and
Choose your dispatch range

| @

CONNECTION ?

Connection status

| v

You are connected to the Radeon Developer Service running at localhost

Disconnect Show connection log

Setup target application

Adv

Edit | Instruc

@ Profile configuration

Apply settings
wecutable:

APL:

Profile Mode:

Active applications
Actively running applications must be restarted to enable applying ings and profile collection.

Executable name APl

Baikal-Cornell.exe OpenCL

d applic
Dispatch range

. end

All target applications will be profiled from Dispatch 10 to Dispatch 19 when launched.

Restore Defaults

AMDZ1

How does it work?

Capture a trace

Launch the target application Generate RGP Profile Double click to open in RGP

(RGP support is built directly into the production driver) e

P ————

¥ Baikal settings Capture pro

Use wsad keys to move
Q/E to climb/descent i
Mouse+RME to look around rl+shift+
Fi to hide/show GUI

Device vendor: Advanced Micro Devices, Inc.
Device name: gfx98e
OpenCL: 2841.5 (PAL, HSAIL)

Resolution: 1280x768

Scene: orig.objm Profile i Created
Unique triangles Baikal-5
Number of instances: @ Baikal-5po
5 GI bounces = Baikal

8,000 Aperture (mm)

35,000 Focal length(mm)

1.000 Focus distance(m)
Color ¥ output
Number of samples: 7117 Baikal

Frame time 17.200 ms/frame (58.1 FPS)
Renderer performance 57.154 Msamples/s
Eye: x = 0,000 y = 1,000 z = 3,000

At x = 0,000 y = 1,000 2 = 2,000
Start benchmark

Start RT benchmark

Open pro’

Profiling settings

Path and filename to Radeon GPU Profiler:

IWOCL 2019

Workflow with RGP - Most expensive events

26

IWOCL 2019

The region you selected is approximately 80% of the profile's GPU time.

Queue

Queue index

Event ID

Event Duration
clEngueueNDRangeKemel("intersect_main")
clEngueuenNDRangeKemel("ShadeSurfaceUbel
cEnqueueNDRangeKemel{"occluded_main™)
clEnqueuelDRangekeme 1adeSurfaceUbel
clEnqueueNDRangekKermel("intersect_main")

clEngueueMDRangeKemel{ “intersect_main")

clEnqueueMDRangeKemel{"ShadeSurfaceUbery

cEngueueNDRangeKemel{ “intersect_main")

cEnqueueNDRangeKemel{"occluded_main")

clEnqueueNDRzangeKemel("occluded_ma

The most expensive 5% of events take 43% of &ll the time in the frame you are locking at.

95-100¢

Pinpoint optimization candidates

AMDZ\

AMDZ\

Workflow with RGP - Understand the Wavefront Occupancy

Wavefront occupancy Event timing Pipeline state Instruction timing

14 clEnqueueNDRangeKernel("FilterPathSt
Launched fror

1,000,000 ns 6, 000 ns 7,0 00 ns 8 000 ns 0,0 1 0,000 ns 11,01

siejap apiH

|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIII| IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIII Start time
100%0

API PSO hash

N [

Wavefronts

SE1 SE3
_ avefront distribution:
ent Duration filter
B2 o4
+ Total wavefronts 15,360
Total threads 983,040
Avg threads per wavefront 64

API Shader VGFR LDS Occupancy
cs 12 32 - 10 /10

See how busy the GPU is

27 IWOCL 2019

AMDZ\

Existing profiling techniques and motivation
AGENDA for improvements to OpenCL tools

GCN and defining Wavefront Occupancy

Applying Wavefront occupancy in Radeon GPU
Profiler

Future Work

28 IWOCL 2019

Future work - RGP and Instruction Tracing

API PSO 0x2A30DC5193E500BD Event 77
Hardware utilization

Hit count Instruction cost (%) Total latency

s

55,400 clk
clk

s getpc bed s[0:1]

v _mad u3Z uzd4 vi4, s13, 8, vO
v mad u32 u24 v1i, sl4, 8, vl
v_1shl add u32 v12, v1, 3, w0
5 mov_b3? s2,

s mov _b32 s3, sl

s _mov k32 s0, s9

s mov b32 s4, =7

s pack 11 b32 blé s5, s8, 16
s _movk_ 132 s6, 0x1000

s mov _b3Z 37, Ox74fac

Lo I

11.4%
ut
3.2% 42% L%

VALU SALU VMEM SMEM LDS

(SR EE B I B CU R S
Lo

o
.

Instruction types

=
=
S

[
[3%]
.

s[8:11], =s[4:7], Ox0
=[12:19], =s[2:3], Ox0O
v_add3 u32 v2, v0, vl4, -2
v_add3 u32 v3, vli, vli, -2
v cowt £32 132 e32 w2, v2
v _ovt f32 132 e32 w3, v3
s_waitent lgkment (0)
v mul f32 e32 vZ, s8, v2
v mul f32 e32 v3, 89, v3
s mov k32 s20, 0xB80003092
s mov b32 s21, Ox6f0f000
5 mov_b32 822, 0xe8300000
s mov_b32 =23, 0x80000000
image gatherd lz w[4:7], w2, s[12:19], s[20:23] dmask:0xl
s[24:31], s[2:3], Ox40
s waitcnt lgkment (0]
image gatherd 1z w([8:11], w2, s[24:31], s[20:23] dmask:0x1
v lshlrev b32 e32 w2, 5, wl

Top-down program execution See instruction durations
Find which part of your program is hot Functional unit utilization (VALU, SALU, LDS)

Type Hit count
VAaLU 133,592
SALU 12,200
VMEM 3,904
44,184 clk
clk SMEM 3,904
clk LDS 10,736
clk
1,952 clk IMMEDIATE 4,830
1,952 clk EXPORT 0
1,952 clk
MISC 458

1,952 clk TOTAL
301,584 clk

Lol

L S I

.
0 C0 00 CO 0D C0 00 00 OO 00 00 €0 00 CO €0 00 0 00 00 0 00 0 0 00 OO OO0 GO0 OO OO
o C0 00 OO 0D CD 00 00 OO 00 00 OO0 00 OO 00 00 0 00 00 0 00 0 OO0 00 OO 00 GO0 0 OO

=1

—
s

=1 o Lo TR o)
W e e e e
¥
(SO S

.

53,830 clk
1,952 clk

[ST ST S T ST ST U S SIS
w

[I %)
=T

o
S
L

Available for all shader stages Does not require kernel modification

29 IWOCL 2019

AMDZ\

Conclusion

 Wavefront Occupancy allows us to quantify performance at any point in time of
a shader as it executes on a device

* HW support and driver instrumentation allows Radeon GPU Profiler to view
wavefront occupancy and answer questions such as:

e How OpenCL, DirectX 12 & Vulkan work on the GPU
* Maps APIs directly to GPU concepts and activity
e Uses custom GPU hardware for accurate low-level event and timing data

e Someone once said something like: “A picture is worth a thousand DWORDS”
* RGP visualizes profile data using a simple Ul

30 IwWOCL 2019

Thank you! Questions?

Information
GPUOpen: https://gpuopen.com/

RGP: https://gpuopen.com/gaming-product/radeon-gpu-profiler-rep/

RGA: https://gpuopen.com/gaming-product/radeon-gpu-analyzer-rga/

Downloads
RGP: https://github.com/GPUQOpen-Tools/RGP/releases
RGA: https://github.com/GPUQOpen-Tools/RGA/releases

Acknowledgements
The AMD Developer Tools Team
Gregory Mitrano for RGP content

31 IWOCL 2019

Contact

Perhaad.Mistry@amd.com

AMDZ\

https://gpuopen.com/
https://gpuopen.com/gaming-product/radeon-gpu-profiler-rgp/
https://gpuopen.com/gaming-product/radeon-gpu-analyzer-rga/
https://github.com/GPUOpen-Tools/RGP/releases
https://github.com/GPUOpen-Tools/RGA/releases

AMDZ\

Disclaimer & Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However,
AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks of their respective owners.

IWOCL 2019

