
How to Deploy AI Software to Self
Driving Cars

Rod Burns, Gordon Brown, Meenakshi Ravindran and Nicolas Miller

IWOCL`19 - May 2019

© 2019 Codeplay Software Ltd.2

Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling vision & machine learning e.g.
TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products
Automotive (ISO 26262)

IoT, Smartphones & Tablets
High Performance Compute (HPC)

Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions
for custom heterogeneous systems

Enabling the toughest processor
systems with tools and middleware
based on open standards

Established 2002 in Scotland

~70 employees

Company

© 2019 Codeplay Software Ltd.3

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.4

Autonomous driving is one of the
biggest challenges in technology

The automotive industry needs to
deliver the latest AI technologies
with safety, high performance and
low power consumption

© 2019 Codeplay Software Ltd.5

Delivering an autonomous vehicle is a
huge software and hardware challenge

It requires scaling up software
development to very high levels of
complexity, performance and risk

Whilst maintaining low power
consumption

© 2019 Codeplay Software Ltd.6

Renesas R-Car architecture

● Embedded automotive
architecture

● Optimized for computer vision
processing and machine
learning

● Designed for low latency, low
power consumption and low
cost

© 2019 Codeplay Software Ltd.7

SYCL-BLAS, SYCL-DNN

SYCL

OpenCL

© 2019 Codeplay Software Ltd.8

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.9

Processing
Element

1. A processing element executes a

single work-item

1

work-item

© 2019 Codeplay Software Ltd.10

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element
1

work-item

2

© 2019 Codeplay Software Ltd.11

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a

work-group, composed of multiple

work-items, one for each processing

element in the compute unit

1

Compute unit

work-item work-group

2

3

© 2019 Codeplay Software Ltd.12

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a

work-group, composed of multiple

work-items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

Local
memory

Compute unit

work-group

2

3

4
Processing

Element

1

work-item

© 2019 Codeplay Software Ltd.13

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a

work-group, composed of multiple

work-items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

5. A device can execute multiple

work-groups

Local
memory

Compute unit

work-group

2

3

4

5

Processing
Element

1

work-item

© 2019 Codeplay Software Ltd.14

Processing
Element

Private
memory

1. A processing element executes a

single work-item

2. Each work-item can access private

memory, a dedicated memory region

for each processing element

3. A compute unit executes a

work-group, composed of multiple

work-items, one for each processing

element in the compute unit

4. Each work-item can access local

memory, a dedicated memory region

for each compute unit

5. A device can execute multiple

work-groups

6. Each work-item can access global

memory, a single memory region

available to all processing elements

1

Local
memory

Global memory

Compute unit

work-item work-group

2

3

4

6

5

© 2019 Codeplay Software Ltd.15

Private memory Local memory Global memory< <

© 2019 Codeplay Software Ltd.16

Work-item

© 2019 Codeplay Software Ltd.17

Work-item Private memory

© 2019 Codeplay Software Ltd.18

Work-item

Work-group

Private memory

© 2019 Codeplay Software Ltd.19

Work-item

Work-group

Private memory

Local memory

© 2019 Codeplay Software Ltd.20

Work-item

Work-group

Private memory

Local memoryWork-group barrier

© 2019 Codeplay Software Ltd.21

Work-item

Work-group

Private memory

Local memory

Kernel

Work-group barrier

© 2019 Codeplay Software Ltd.22

Work-item Private memory

Local memory

Global memoryKernel

Work-group Work-group barrier

© 2019 Codeplay Software Ltd.23

Work-item Private memory

Local memory

Global memoryKernel Kernel barrier

Work-group Work-group barrier

© 2019 Codeplay Software Ltd.24

Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11

Delivering a heterogeneous programming solution for C++

© 2019 Codeplay Software Ltd.25

__global__ vec_add(float *a, float *b, float *c) {
 return c[i] = a[i] + b[i];
}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c);

vector<float> a, b, c;

#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
 c[i] = a[i] + b[i];
}

cgh.parallel_for<vec_add>(range, [=](cl::sycl::id<2> idx) {
 c[idx] = a[idx] + c[idx];
}));

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
 c[idx] = a[idx] + b[idx];
});

© 2019 Codeplay Software Ltd.26

SYCL separates the storage and access of data through the use
of buffers and accessors

SYCL provides data dependency tracking based on accessors
to optimise the scheduling of tasks

© 2019 Codeplay Software Ltd.27

Buffer

Accessor

Accessor

Buffers and accessors
are type safe access

across host and device

Accessors are used
to describe access

requirements

Buffers manage data
across the host and
one or more devices

CG A

CG B

© 2019 Codeplay Software Ltd.28

Buffer B

Buffer C

Buffer D

Buffer A

CG B

CG C

CG A
Read accessor

Write accessor

Read accessor

Write accessor

Read accessor

Write accessor

Read accessor

CG C

CG A CG B

© 2019 Codeplay Software Ltd.29

CG

Buffer global_buffer
accessor

constant_buffer
accessor

local accessor

Request access to a buffer in
the global memory region

Request access to a buffer in
the constant memory region

Allocate memory in the local
memory region

host_buffer
accessor

Request access to a buffer
immediately on the host

© 2019 Codeplay Software Ltd.30

Benefits of data dependency task graphs

● Allows you to describe your tasks in terms of relationships
○ Removes the need to en-queue explicit copies

○ Removes the need for complex event handling

● Allows the runtime to make data movement optimizations
○ Preemptively copy data to a device before kernels are executed

○ Avoid unnecessarily copying data back to the host after execution on a

device

© 2019 Codeplay Software Ltd.31

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.32

CPU

© 2019 Codeplay Software Ltd.33

CPU

DDR

1. A CPU has a region of

dedicated memory

1

© 2019 Codeplay Software Ltd.34

CPU

DDR

1. A CPU has a region of

dedicated memory

2. CPU memory is

connected to the CPU

via a bus

1

2

© 2019 Codeplay Software Ltd.35

CPU

DDR

1. A CPU has a region of

dedicated memory

2. The CPU memory is

connected to the CPU

via a bus

3. A CPU has a number of

cores

Core Core Core Core

1

3

2

© 2019 Codeplay Software Ltd.36

CPU

DDR

1. A CPU has a region of

dedicated memory

2. The CPU memory is

connected to the CPU

via a bus

3. A CPU has a number of

cores

4. A CPU has a number of

caches of different

levels

Core Core Core Core

Cache (multiple levels)

1

2

3

4

© 2019 Codeplay Software Ltd.37

CPU

DDR

1. A CPU has a region of

dedicated memory

2. The CPU memory is

connected to the CPU

via a bus

3. A CPU has a number of

cores

4. A CPU has a number of

caches of different

levels

5. Each CPU core has

dedicated registers

Core Core Core Core

Cache (multiple levels)

Registers Registers Registers Registers

1

2

3

4

5

© 2019 Codeplay Software Ltd.38

CPU

DDR

Core Core Core Core

Cache (multiple levels)

Registers Registers Registers Registers

© 2019 Codeplay Software Ltd.39

CPU

DDR

1. Lanes of the CPU core

SIMD instructions are

mapped to work-itemsSIMD work-items SIMD work-items SIMD work-items SIMD work-items

Cache (multiple levels)

Registers Registers Registers Registers

1

© 2019 Codeplay Software Ltd.40

CPU

DDR

1. Lanes of the CPU core

SIMD instructions are

mapped to work-items

2. CPU registers and their

associated caches are

mapped to private

memory

SIMD work-items SIMD work-items SIMD work-items SIMD work-items

Cache (multiple levels)

Private memory Private memory Private memory Private memory

1

2

© 2019 Codeplay Software Ltd.41

CPU

DDR

1. Lanes of the CPU core

SIMD instructions are

mapped to work-items

2. CPU registers and their

associated caches are

mapped to private

memory

3. A section of DDR is

mapped to local memory

SIMD work-items SIMD work-items SIMD work-items SIMD work-items

Cache (multiple levels)

Private memory Private memory Private memory Private memory

1

2

Local memory

3

© 2019 Codeplay Software Ltd.42

CPU

DDR

1. Lanes of the CPU core

SIMD instructions are

mapped to work-items

2. CPU registers and their

associated caches are

mapped to private

memory

3. A section of DDR is

mapped to local memory

4. The rest of DDR is

mapped to global

memory

SIMD work-items SIMD work-items SIMD work-items SIMD work-items

Cache (multiple levels)

Private memory Private memory Private memory Private memory

1

2

Local memory

3

Global memory

4

© 2019 Codeplay Software Ltd.43

GPU

© 2019 Codeplay Software Ltd.44

GPU

DDR

1. A GPU has a region of

dedicated DDR memory

which is connected to the

CPU

1

© 2019 Codeplay Software Ltd.45

GPU

DDR

1. A GPU has a region of

dedicated DDR memory

which is connected to the

CPU

2. A GPU is divided into a

number of compute units

Compute unit Compute unit

...

1

2

© 2019 Codeplay Software Ltd.46

GPU

DDR

1. A GPU has a region of

dedicated DDR memory

which is connected to the

CPU

2. A GPU is divided into a

number of compute units

3. Each compute unit has

dedicated shared memory

Compute unit Compute unit

...

Shared memory Shared memory

2

3

1

© 2019 Codeplay Software Ltd.47

GPU

DDR

1. A GPU has a region of

dedicated DDR memory

which is connected to the

CPU

2. A GPU is divided into a

number of compute units

3. Each compute unit has

dedicated shared memory

4. Each compute unit has a

number of processing

elements

Compute unit Compute unit

...

Shared memory Shared memory

PE PE PE PE PE PE

... ...

2

3

1

4

© 2019 Codeplay Software Ltd.48

GPU

DDR

1. A GPU has a region of

dedicated DDR memory

which is connected to the

CPU

2. A GPU is divided into a

number of compute units

3. Each compute unit has

dedicated shared memory

4. Each compute unit has a

number of processing

elements

5. Each processing element has

dedicated processing

element local memory

Compute unit Compute unit

...

Shared memory Shared memory

PE PE PE

PM PM PM

PE PE PE

PM PM PM
... ...

2

3

1

4

5

© 2019 Codeplay Software Ltd.49

GPU

DDR

Compute unit Compute unit

...

Shared memory Shared memory

PE PE PE

PM PM PM

PE PE PE

PM PM PM
... ...

© 2019 Codeplay Software Ltd.50

GPU

DDR

Compute units on are mapped to

the optimal work-group size
Work-group Work-group

...

Shared memory Shared memory

PE PE PE

PM PM PM

PE PE PE

PM PM PM
... ...

© 2019 Codeplay Software Ltd.51

GPU

DDR

Processing elements on are

mapped to work-items
Work-group Work-group

...

Shared memory Shared memory

Work-
item

Work-
item

Work-
item

PM PM PM

Work-
item

Work-
item

Work-
item

PM PM PM
... ...

© 2019 Codeplay Software Ltd.52

GPU

Global memory

DDR memory is mapped to global

memory
Work-group Work-group

...

Shared memory Shared memory

Work-
item

Work-
item

Work-
item

PM PM PM

Work-
item

Work-
item

Work-
item

PM PM PM
... ...

© 2019 Codeplay Software Ltd.53

GPU

Global memory

Compute unit shared memory is

mapped to local memory
Work-group Work-group

...

Local memory Local memory

Work-
item

Work-
item

Work-
item

PM PM PM

Work-
item

Work-
item

Work-
item

PM PM PM
... ...

© 2019 Codeplay Software Ltd.54

GPU

Global memory

Processing element local memory

is mapped to private memory
Work-group Work-group

...

Local memory Local memory

Work-
item

Work-
item

Work-
item

PM PM PM

Work-
item

Work-
item

Work-
item

PM PM PM
... ...

© 2019 Codeplay Software Ltd.55

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.56

CVEngine

© 2019 Codeplay Software Ltd.57

CVEngine

DDR

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

1

© 2019 Codeplay Software Ltd.58

CVEngine

Cluster Cluster

DDR

2

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

1

© 2019 Codeplay Software Ltd.59

CVEngine

Cluster Cluster

SRAM

DDR
1

2

3

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

3. The CVEngine has a region of

on-chip SRAM, also connected to

the CPU

© 2019 Codeplay Software Ltd.60

CVEngine

Cluster Cluster

Core Core Core Core Core Core Core Core

SRAM

DDR
1

2

3

4

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

3. The CVEngine has a region of

on-chip SRAM, also connected to

the CPU

4. Each cluster has 4 cores each with

a number of processing elements

© 2019 Codeplay Software Ltd.61

CVEngine

Cluster

Cache (multiple levels)

Cluster

Cache (multiple levels)

Core Core Core Core

Registers Registers Registers Registers

Core Core Core Core

Registers Registers Registers Registers

SRAM

DDR
1

2

3

4

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

3. The CVEngine has a region of

on-chip SRAM, also connected to

the CPU

4. Each cluster has 4 cores each with

a number of processing elements

5. Each core has dedicated registers

and can access DDR memory via

caches
5

© 2019 Codeplay Software Ltd.62

CVEngine

Cluster

Cache (multiple levels)

Cluster

Cache (multiple levels)

Core Core Core Core

Registers Registers Registers Registers

Core Core Core Core

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

1

2

3

4

5

6

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

3. The CVEngine has a region of

on-chip SRAM, also connected to

the CPU

4. Each cluster has 4 cores each with

a number of processing elements

5. Each core has dedicated registers

and can access DDR memory via

caches

6. Each core also has dedicated local

SRAM

© 2019 Codeplay Software Ltd.63

CVEngine

Cluster

Cache (multiple levels)

Cluster

Cache (multiple levels)

Core Core Core Core

Registers Registers Registers Registers

Core Core Core Core

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

1

2

3

4

5

6

7

1. The CVEngine has is connected to

off-chip DDR which is connected to

the CPU

2. The CVEngine has a number of

clusters

3. The CVEngine has a region of

on-chip SRAM, also connected to

the CPU

4. Each cluster has 4 cores each with

a number of processing elements

5. Each core has dedicated registers

and can access DDR memory via

caches

6. Each core also has dedicated local

SRAM

7. The local SRAM is connected to the

on-chip SRAM and DDR via DMA

© 2019 Codeplay Software Ltd.64

CVEngine

Cluster

Cache (multiple levels)

Cluster

Cache (multiple levels)

Core Core Core Core

Registers Registers Registers Registers

Core Core Core Core

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

© 2019 Codeplay Software Ltd.65

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Core Core Core Core

Registers Registers Registers Registers

Core Core Core Core

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Each cluster maps to the optimal

work-group size

© 2019 Codeplay Software Ltd.66

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

Sub-
group

Sub-
group

Sub-
group

Registers Registers Registers Registers

Sub-
group

Sub-
group

Sub-
group

Sub-
group

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Cores provide an extra level of

subdivision within work-groups

So each core maps to a sub-group

Sub-groups are available in

OpenCL 2.x but not yet available

in SYCL so this will require an

extension

© 2019 Codeplay Software Ltd.67

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

DDR

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Each processing element within a

core maps to a single work-item

© 2019 Codeplay Software Ltd.68

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

Global memory

SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Off-chip DDR memory is mapped

to global memory

© 2019 Codeplay Software Ltd.69

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Registers Registers Registers Registers

Global memory

Local memory

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

On-chip SRAM memory is mapped

to local memory

© 2019 Codeplay Software Ltd.70

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Global memory

Local memory

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Registers are mapped to private

memory

© 2019 Codeplay Software Ltd.71

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Global memory

On-chip memory

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Local
SRAM

Since SRAM can be written to and

read from the CPU and can be

accessed by all work-groups

similar to global memory

SRAM can also be used to allocate

low-latency on-chip buffers

Local memory

© 2019 Codeplay Software Ltd.72

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Global memory

On-chip memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Since each core has its own

dedicated local SRAM

Local SRAM can be mapped to a

sub-group local memory

Sub-group local memory is not yet

available in OpenCL or SYCL so

this will require an extension

Local memory

© 2019 Codeplay Software Ltd.73

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Global memory

On-chip memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Since there is DMA connections

from SRAM and DDR to local

SRAM

The CVEngine can support

asynchronous memory copies

from on-chip memory buffers and

global memory buffers into

sub-group local memory and vise

versa

These asynchronous copies

cannot be represented in OpenCL

or SYCL so will require an

extension

Local memory

© 2019 Codeplay Software Ltd.74

Work-item Private memory

Local memory

Global memoryKernel Kernel barrier

Work-group Work-group barrier

© 2019 Codeplay Software Ltd.75

Work-item Private memory

Local memory

Global
memoryKernel Kernel barrier

Work-group Work-group barrier

On-chip
memory

© 2019 Codeplay Software Ltd.76

Work-item

Work-group

Private memory

Local memory

Kernel

Work-group barrier

Kernel barrier

Sub-group Sub-group local memorySub-group barrier

Global
memory

On-chip
memory

© 2019 Codeplay Software Ltd.77

Work-item

Work-group

Private memory

Local memory

Kernel

Work-group barrier

Kernel barrier

Sub-group
Sub-group local memorySub-group barrier

Global
memory

On-chip
memory

Asynchronous sub-group copies

© 2019 Codeplay Software Ltd.78

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.79

Disclaimer

The features that I present here are Codeplay extensions and
are not standard SYCL features

© 2019 Codeplay Software Ltd.80

CVEngine

Work-group

Cache (multiple levels)

Work-group

Cache (multiple levels)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Global memory

On-chip memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Local memory

© 2019 Codeplay Software Ltd.81

● On-chip memory
○ On-chip memory is allocated in OpenCL/SYCL similarly to regular buffers

■ ComputeAorta (OpenCL) provides an extension API

■ ComputeCpp (SYCL) provides an extension buffer property use_onchip_memory

○ On-chip memory buffers are accessed in OpenCL/SYCL kernels in the

same way as regular buffers

On-chip memory Local memory

© 2019 Codeplay Software Ltd.82

class kernel;

using namespace cl::sycl;

{

 queue deviceQueue;

 buffer<float, 1> onchipBuffer(hostData, size,

 {codeplay::property::buffer::use_onchip_memory(

 codeplay::property::require)});

 deviceQueue.submit([&](handler &cgh){

 auto onchipAcc =

 onchipBuffer.get_access<access::mode::read_write>(cgh);

 cgh.parallel_for<kernel>(range<1>(size), [=](id<1> idx){

 onchipAcc[idx] = onchipAcc[idx] * onchipAcc[idx];

 }):

 });

}

We construct a SYCL
buffer as normal, but
provide the
use_onchip_memory
buffer property

This property takes an
enumeration; either
require, which means
that SYCL runtime has to
use it or prefer, which
means the SYCL runtime
should try to use it

© 2019 Codeplay Software Ltd.83

● Sub-groups
○ Sub-groups are exposed following the OpenCL 2.x feature and as a

natural extension to the SYCL execution model
■ ComputeAorta (OpenCL) provides kernel builtins for querying sub-group info and

invoking a sub-group barrier

■ ComputeCpp (SYCL) provides an extension to nd_item to expose a sub_group

object, similar to group, which exposes member functions for querying sub-group

info and invoking a sub-group barrier

○ The size of sub-groups cannot be specified

explicitly by the users, they are determined by

the implementation

Work-group

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

© 2019 Codeplay Software Ltd.84

class kernel;

using namespace cl::sycl;

{

 queue deviceQueue;

 buffer<float, 1> deviceBuffer(hostData, size);

 deviceQueue.submit([&](handler &cgh){

 auto deviceAcc=

 deviceBuffer.get_access<access::mode::read_write>(cgh);

 cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

 [=](nd_item<1> ndItem){

 …
 auto subGroup = ndItem.get_sub_group();

 auto subGroupRange = subGroup.get_group_range();

 auto subGroupId = subGroup.get_group_id();

 subGroup.barrier();

 …
 }):

 });

}

We query in-kernel
sub-group information
and invoke sub-group
barriers via the
sub_group class and the
nd_item has a member
function called
get_sub_group that will
return a sub_group
object

If an implementation
does not support
sub-groups using
sub_group is undefined

© 2019 Codeplay Software Ltd.85

● Sub-group local memory
○ Sub-group local memory is exposed with extensions which follow the

OpenCL/SYCL memory model
■ ComputeAorta (OpenCL) provides a new address space which can be used to

allocate sub-group local memory

■ ComputeCpp (SYCL) provides a new accessor access target;

access::target::subgroup_local, that behaves similarly to access::target::local

Work-group

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

© 2019 Codeplay Software Ltd.86

class kernel;

using namespace cl::sycl;

{

 queue deviceQueue;

 buffer<float, 1> deviceBuffer(hostData, size);

 deviceQueue.submit([&](handler &cgh){

 auto deviceAcc=

 deviceBuffer.get_access<access::mode::read_write>(cgh);

 auto subGroupLocalMem = accessor<float, 1, access::mode::read_write,

 access::target::subgroup_local>(cgh, range<1>(32));

 cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

 [=](nd_item<1> ndItem){

 …
 subGroupLocalMem[idx] = ...;

 …
 }):

 });

}

We allocate sub-group
local memory by
constructing an accessor
with the subgroup_local
access target

© 2019 Codeplay Software Ltd.87

● Asynchronous sub-group copies
○ Asynchronous sub-group copies are exposed following the OpenCL/SYCL

feature for asynchronous work-group copies
■ ComputeAorta (OpenCL) provides a plane_t type to represent a non-accessible

buffer and kernel builtins for invoking an asynchronous in-kernel copies between

a plane_t and a sub-group local memory allocation

■ ComputeCpp (SYCL) provides a new accessor access target; access::target::plane,

and a member function to the sub_group extension; async_sub_group_copy, to

perform an asynchronous in-kernel copy from a plane

accessor to a sub-group local accessor Work-group

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

Sub-
group

(N work-
items)

PM PM PM PM

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

Sub-group
local

memory

© 2019 Codeplay Software Ltd.88

class kernel;

using namespace cl::sycl;

{

 queue deviceQueue;

 buffer<float, 1> deviceBuffer(hostData, size);

 deviceQueue.submit([&](handler &cgh){

 auto devicePlane =

 deviceBuffer.get_access<access::mode::read_write,

 access::target::plane>(cgh);

 auto subGroupLocalMem = accessor<float, 1, access::mode::read_write,

 access::target::subgroup_local>(cgh, range<1>(32));

 cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

 [=](nd_item<1> ndItem){

 …
 auto subGroup = ndItem.get_sub_group();

 auto event = subGroup.async_sub_group_copy(subGroupLocalMem,

 devicePlane, range<1>(32));

 …
 event.wait();

 }):

 });

}

We construct a plane
accessor using the plane
access target

We perform
asynchronous in-kernel
sub-group copies by
calling the sub_group
member function
async_sub_group_copy

This returns a
device_event that can be
used to wait on the copy
to complete.

© 2019 Codeplay Software Ltd.89

Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car

© 2019 Codeplay Software Ltd.90

© 2019 Codeplay Software Ltd.91

Input Image

© 2019 Codeplay Software Ltd.92

Input Image

© 2019 Codeplay Software Ltd.93

Input Image

Global memory

✔ The entire image will fit into global memory

✘ Global memory has a high access latency

© 2019 Codeplay Software Ltd.94

✔ On-chip memory has a much lower access
latency

✘ Only part of the image will fit into on-chip
memory at once, so we have to tile it

✘ Executing a kernel per tile incurs host-side
overhead

Note that because convolutions are gather
operations the input data much include a halo

On-chip memory

1,0

0,1 1,1

0,0

© 2019 Codeplay Software Ltd.95

Copy
{0, 0}

Convo
{0, 0}

Copy
{1, 0}

Convo
{1, 0}

Copy
{0, 1}

Convo
{0, 1}

Copy
{1, 1}

Convo
{1, 1}

Copy

Compute

© 2019 Codeplay Software Ltd.96

Copy
{0, 0}

Convo
{0, 0}

Copy
{1, 0}

Convo
{1, 0}

Copy
{0, 1}

Convo
{0, 1}

Copy
{1, 1}

Convo
{1, 1}

Copy

Compute

© 2019 Codeplay Software Ltd.97

Copy
{0, 0}

Convo
{0, 0}

Copy
{1, 0}

Convo
{1, 0}

Copy
{0, 1}

Convo
{0, 1}

Copy
{1, 1}

Convo
{1, 1}

Copy

Compute

© 2019 Codeplay Software Ltd.98

Copy
{0, 0}

Convo
{0, 0}

Copy
{1, 0}

Convo
{1, 0}

Copy
{0, 1}

Convo
{0, 1}

Copy
{1, 1}

Convo
{1, 1}

Copy

Compute

© 2019 Codeplay Software Ltd.99

✔ By double buffering copy and computation you
can hide the latency of copying into on-chip
memory

However, the R-Car CVEngine provides further
sub-group local memory which has an even lower
access latency than on-chip memory

On-chip memory

1,0

0,1 1,1

0,0

© 2019 Codeplay Software Ltd.100

✔ Asynchronously copying each part of the input
data that is associated with a sub-group to
sub-group local memory will further lower access
latency

✘ Again, only part of the image data that is
associated with a sub-group will fit into sub-group
local memory at once, so again we have to tile it

In this case the tiling is done in-kernel

On-chip memory
1,0

0,1 1,1

Sub-group
local memory

1,0

0,1 1,1

0,0

© 2019 Codeplay Software Ltd.101

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

© 2019 Codeplay Software Ltd.102

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

This kernel is operating
on a tile that is stored in
on-chip memory

© 2019 Codeplay Software Ltd.103

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

We want to perform the
computation of the part
of the input that each
sub-group corresponds
to in sub-group local
memory

But all the memory
required may not fit into
sub-group local memory
at once

So we calculate how
many tiles are required
for a sub-group

© 2019 Codeplay Software Ltd.104

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

First we initiate and wait
on the copy of the first
tile so we can perform
the computation on it

Then we initiate, but
don’t wait for the copy
of the second tile, so
that copy will happen in
parallel to the
computation of the first
tile

© 2019 Codeplay Software Ltd.105

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

Then we iterate over the
tiles, performing the
computation of the
current tile and then
waiting on the copy for
the next tile

© 2019 Codeplay Software Ltd.106

cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
 auto subGroup = ndItem.get_sub_group();

 auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

 auto currentTileRange = calculate_tile_range(subGroup, 0);
 auto nextTileRange = calculate_tile_range(subGroup, 1);

 subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
 .wait();
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 for (int tile = 0; tile < numTiles; ++tile) {
 compute_tile(subGroup, currentTileRange, output);

 copyEvent.wait();

 if (tile == (numTiles - 1)) {
 copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
 nextTileRange);

 currentTileRange = nextTileRange;
 nextTileRange = calculate_tile_range(subGroup, tile + 1);

 swap(currentTileLocalMem, nextTileLocalMem);
 swap(currentTilePlain, nextTilePlain);
 }
 }
});

Finally, if there are
further tiles to be
processed, then we
initiate the copy for the
next tile and then swap
the accessors for the
next iteration of the loop

© 2019 Codeplay Software Ltd.107

✔ By double buffering asynchronous copies and
the computation in each sub-group you can hide
the latency of copying into sub-group local
memory

On-chip memory
1,0

0,1 1,1

Sub-group
local memory

1,0

0,1 1,1

0,0

© 2019 Codeplay Software Ltd.108

Conclusion

● The Renesas R-Car CVEngine is designed to efficiently accelerate
complex machine learning algorithms in a low power environment

● The OpenCL/SYCL programming memory can be efficiently applied
and extended when necessary to support very unique hardware
architectures

● This allows automotive systems to take advantage of AI software
stacks based on open standards

/codeplaysoft@codeplaysoft codeplay.com

W
e’re

Hiri
ng!

co
deplay.c

om
/c

are
ers/

Thank you for listening

