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Partners

Codeplay - Connecting AI to Silicon

Customers

C++ platform via the SYCL™ open standard, enabling vision & machine learning e.g. 
TensorFlow™

The heart of Codeplay's compute technology
enabling OpenCL™, SPIR™, HSA™ and Vulkan™

Products
Automotive (ISO 26262)

IoT, Smartphones & Tablets
High Performance Compute (HPC)

Medical & Industrial

Technologies: Vision Processing
Machine Learning

Artificial Intelligence
Big Data Compute

Addressable Markets

High-performance software solutions 
for custom heterogeneous systems

Enabling the toughest processor 
systems with tools and middleware 
based on open standards

Established 2002 in Scotland

~70 employees

Company
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Autonomous driving is one of the 
biggest challenges in technology

The automotive industry needs to 
deliver the latest AI technologies 
with safety, high performance and 
low power consumption
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Delivering an autonomous vehicle is a 
huge software and hardware challenge

It requires scaling up software 
development to very high levels of 
complexity, performance and risk

Whilst maintaining low power 
consumption
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Renesas R-Car architecture

● Embedded automotive 
architecture

● Optimized for computer vision 
processing and machine 
learning

● Designed for low latency, low 
power consumption and low 
cost



© 2019 Codeplay Software Ltd.7

SYCL-BLAS, SYCL-DNN

SYCL

OpenCL
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© 2019 Codeplay Software Ltd.16
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Cross-platform, single-source, high-level, C++ programming layer
Built on top of OpenCL and based on standard C++11

Delivering a heterogeneous programming solution for C++
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__global__ vec_add(float *a, float *b, float *c) {
  return c[i] = a[i] + b[i];
}

float *a, *b, *c;
vec_add<<<range>>>(a, b, c); 

vector<float> a, b, c;

#pragma parallel_for
for(int i = 0; i < a.size(); i++) {
  c[i] = a[i] + b[i];
}

cgh.parallel_for<vec_add>(range, [=](cl::sycl::id<2> idx) {
  c[idx] = a[idx] + c[idx];
}));

array_view<float> a, b, c;
extent<2> e(64, 64);

parallel_for_each(e, [=](index<2> idx) restrict(amp) {
  c[idx] = a[idx] + b[idx];
});
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SYCL separates the storage and access of data through the use 
of buffers and accessors

SYCL provides data dependency tracking based on accessors 
to optimise the scheduling of tasks



© 2019 Codeplay Software Ltd.27

Buffer

Accessor

Accessor

Buffers and accessors 
are type safe access 

across host and device

Accessors are used 
to describe access 

requirements

Buffers manage data 
across the host and 
one or more devices

CG A

CG B
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CG

Buffer global_buffer 
accessor

constant_buffer 
accessor

local accessor

Request access to a buffer in 
the global memory region

Request access to a buffer in 
the constant memory region

Allocate memory in the local 
memory region

host_buffer 
accessor

Request access to a buffer 
immediately on the host
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Benefits of data dependency task graphs

● Allows you to describe your tasks in terms of relationships
○ Removes the need to en-queue explicit copies

○ Removes the need for complex event handling

● Allows the runtime to make data movement optimizations
○ Preemptively copy data to a device before kernels are executed

○ Avoid unnecessarily copying data back to the host after execution on a 

device
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SIMD instructions are 
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subdivision within work-groups

So each core maps to a sub-group

Sub-groups are available in 

OpenCL 2.x but not yet available 

in SYCL so this will require an 

extension
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read from the CPU and can be 

accessed by all work-groups 
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extension
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Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model

The Renesas R-Car architecture

Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
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Disclaimer

The features that I present here are Codeplay extensions and 
are not standard SYCL features
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● On-chip memory
○ On-chip memory is allocated in OpenCL/SYCL similarly to regular buffers

■ ComputeAorta (OpenCL) provides an extension API

■ ComputeCpp (SYCL) provides an extension buffer property use_onchip_memory

○ On-chip memory buffers are accessed in OpenCL/SYCL kernels in the 

same way as regular buffers

On-chip memory Local memory
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class kernel;

using namespace cl::sycl;

{

  queue deviceQueue;

  buffer<float, 1> onchipBuffer(hostData, size,

    {codeplay::property::buffer::use_onchip_memory(

      codeplay::property::require)});

  deviceQueue.submit([&](handler &cgh){

    auto onchipAcc =

      onchipBuffer.get_access<access::mode::read_write>(cgh);

    cgh.parallel_for<kernel>(range<1>(size), [=](id<1> idx){

      onchipAcc[idx] = onchipAcc[idx] * onchipAcc[idx];

    }):

  });

}

We construct a SYCL 
buffer as normal, but 
provide the 
use_onchip_memory 
buffer property

This property takes an 
enumeration; either 
require, which means 
that SYCL runtime has to 
use it or prefer, which 
means the SYCL runtime 
should try to use it
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● Sub-groups
○ Sub-groups are exposed following the OpenCL 2.x feature and as a 

natural extension to the SYCL execution model
■ ComputeAorta (OpenCL) provides kernel builtins for querying sub-group info and 

invoking a sub-group barrier

■ ComputeCpp (SYCL) provides an extension to nd_item to expose a sub_group 

object, similar to group, which exposes member functions for querying sub-group 

info and invoking a sub-group barrier

○ The size of sub-groups cannot be specified

explicitly by the users, they are determined by

the implementation
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class kernel;

using namespace cl::sycl;

{

  queue deviceQueue;

  buffer<float, 1> deviceBuffer(hostData, size);

  deviceQueue.submit([&](handler &cgh){

    auto deviceAcc=

      deviceBuffer.get_access<access::mode::read_write>(cgh);

    cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

      [=](nd_item<1> ndItem){

      …
      auto subGroup = ndItem.get_sub_group();

      auto subGroupRange = subGroup.get_group_range();

      auto subGroupId = subGroup.get_group_id();

      subGroup.barrier();

      …
    }):

  });

}

We query in-kernel 
sub-group information 
and invoke sub-group 
barriers via the 
sub_group class and the 
nd_item has a member 
function called 
get_sub_group that will 
return a sub_group 
object

If an implementation 
does not support 
sub-groups using 
sub_group is undefined
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● Sub-group local memory
○ Sub-group local memory is exposed with extensions which follow the 

OpenCL/SYCL memory model
■ ComputeAorta (OpenCL) provides a new address space which can be used to 

allocate sub-group local memory

■ ComputeCpp (SYCL) provides a new accessor access target; 

access::target::subgroup_local, that behaves similarly to access::target::local
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class kernel;

using namespace cl::sycl;

{

  queue deviceQueue;

  buffer<float, 1> deviceBuffer(hostData, size);

  deviceQueue.submit([&](handler &cgh){

    auto deviceAcc=

      deviceBuffer.get_access<access::mode::read_write>(cgh);

    auto subGroupLocalMem = accessor<float, 1, access::mode::read_write,

      access::target::subgroup_local>(cgh, range<1>(32));

    cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

      [=](nd_item<1> ndItem){

      …
      subGroupLocalMem[idx] = ...;

      …
    }):

  });

}

We allocate sub-group 
local memory by 
constructing an accessor 
with the subgroup_local 
access target
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● Asynchronous sub-group copies
○ Asynchronous sub-group copies are exposed following the OpenCL/SYCL 

feature for asynchronous work-group copies
■ ComputeAorta (OpenCL) provides a plane_t type to represent a non-accessible 

buffer and kernel builtins for invoking an asynchronous in-kernel copies between 

a plane_t and a sub-group local memory allocation

■ ComputeCpp (SYCL) provides a new accessor access target; access::target::plane, 

and a member function to the sub_group extension; async_sub_group_copy, to 

perform an asynchronous in-kernel copy from a plane

accessor to a sub-group local accessor Work-group
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class kernel;

using namespace cl::sycl;

{

  queue deviceQueue;

  buffer<float, 1> deviceBuffer(hostData, size);

  deviceQueue.submit([&](handler &cgh){

    auto devicePlane =

      deviceBuffer.get_access<access::mode::read_write,

        access::target::plane>(cgh);

    auto subGroupLocalMem = accessor<float, 1, access::mode::read_write,

      access::target::subgroup_local>(cgh, range<1>(32));

    cgh.parallel_for<kernel>(nd_range<1>(range<1>(size), range<1>(32)),

      [=](nd_item<1> ndItem){

      …
      auto subGroup = ndItem.get_sub_group();

      auto event = subGroup.async_sub_group_copy(subGroupLocalMem,

        devicePlane, range<1>(32));

      …
      event.wait();

    }):

  });

}

We construct a plane 
accessor using the plane 
access target

We perform 
asynchronous in-kernel 
sub-group copies by 
calling the sub_group 
member function 
async_sub_group_copy

This returns a 
device_event that can be 
used to wait on the copy 
to complete.
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Agenda

Emergent hardware for AI in automotive

Overview of OpenCL/SYCL programming model

Mapping typical hardware to the OpenCL/SYCL programming model
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Extending OpenCL & SYCL for R-Car

Optimising machine learning algorithms using R-Car
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Input Image
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Input Image
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Input Image

Global memory

✔ The entire image will fit into global memory

✘ Global memory has a high access latency



© 2019 Codeplay Software Ltd.94

✔ On-chip memory has a much lower access 
latency

✘ Only part of the image will fit into on-chip 
memory at once, so we have to tile it

✘ Executing a kernel per tile incurs host-side 
overhead

Note that because convolutions are gather 
operations the input data much include a halo

On-chip memory

1,0

0,1 1,1

0,0
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✔ By double buffering copy and computation you 
can hide the latency of copying into on-chip 
memory

However, the R-Car CVEngine provides further 
sub-group local memory which has an even lower 
access latency than on-chip memory

On-chip memory

1,0

0,1 1,1

0,0
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✔ Asynchronously copying each part of the input 
data that is associated with a sub-group to 
sub-group local memory will further lower access 
latency

✘ Again, only part of the image data that is 
associated with a sub-group will fit into sub-group 
local memory at once, so again we have to tile it

In this case the tiling is done in-kernel

On-chip memory
1,0

0,1 1,1

Sub-group  
local memory

1,0

0,1 1,1

0,0
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});

This kernel is operating 
on a tile that is stored in 
on-chip memory
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});

We want to perform the 
computation of the part 
of the input that each 
sub-group corresponds 
to in sub-group local 
memory

But all the memory 
required may not fit into 
sub-group local memory 
at once

So we calculate how 
many tiles are required 
for a sub-group
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});

First we initiate and wait 
on the copy of the first 
tile so we can perform 
the computation on it

Then we initiate, but 
don’t wait for the copy 
of the second tile, so 
that copy will happen in 
parallel to the 
computation of the first 
tile
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});

Then we iterate over the 
tiles, performing the 
computation of the 
current tile and then 
waiting on the copy for 
the next tile
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cgh.parallel_for<convo2d>(ndRange, [=](nd_item<1> ndItem){
  auto subGroup = ndItem.get_sub_group();

  auto numTiles = calculate_num_tiles(subGroup.get_group_range(), TILE_SIZE);

  auto currentTileRange = calculate_tile_range(subGroup, 0);
  auto nextTileRange = calculate_tile_range(subGroup, 1);

  subGroup.async_sub_group_copy(currentTileLocalMem, currentTilePlain, currentTileRange)
    .wait();
  copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
      nextTileRange);

  for (int tile = 0; tile < numTiles; ++tile) {
    compute_tile(subGroup, currentTileRange, output);

    copyEvent.wait();

    if (tile == (numTiles - 1)) {
      copyEvent = subGroup.async_sub_group_copy(nextTileLocalMem, nextTilePlain,
        nextTileRange);

      currentTileRange = nextTileRange;
      nextTileRange = calculate_tile_range(subGroup, tile + 1);

      swap(currentTileLocalMem, nextTileLocalMem);
      swap(currentTilePlain, nextTilePlain);
    }
  }
});

Finally, if there are 
further tiles to be 
processed, then we 
initiate the copy for the 
next tile and then swap 
the accessors for the 
next iteration of the loop
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✔ By double buffering asynchronous copies and 
the computation in each sub-group you can hide 
the latency of copying into sub-group local 
memory
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Conclusion

● The Renesas R-Car CVEngine is designed to efficiently accelerate 
complex machine learning algorithms in a low power environment

● The OpenCL/SYCL programming memory can be efficiently applied 
and extended when necessary to support very unique hardware 
architectures

● This allows automotive systems to take advantage of AI software 
stacks based on open standards
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