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About me...

e Background in C++ programming models for
heterogeneous systems

* Developer with Codeplay Software for 6 years

* Worked on ComputeCpp (SYCL) since it’s inception

* Contributor to the Khronos SYCL standard for over 5
years

* Contributor to C++ executors and heterogeneity for 2
years
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Disclaimer

A\

The proposals describe here are work in progress
These may not reflect the final proposals
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Agenda

e P0443r7 A Unified Executors Proposal for C++

e P1019r0 Integrating Executors with Parallel Algorithms

e P0796r2 Supporting Heterogeneous & Distributed
Computing Through Affinity
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P0443r7 A Unified Executors Proposal for
C++
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What are executors?
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invoke async parallel algorithms future::then post

defer define_task_block dispatch asynchronous operations strand<>

Unified interface for execution

SYCL / OpenCL / Boost.Asio /
CUDA / HCC OpenMP / MPI C++ Thread Pool Vetheiline T
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Topology of execution
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® An instruction stream is a
callable object that is to be
executed

Instruction
Stream
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e A light-weight execution
agent is a single thread of
execution executing the
Instruction stream

Lightweight\ Instruction
Execution J Stream

Agent
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® An execution function is a
function which executes an

Execution
instruction stream on one LB
or more light-weight h——
execution agents with a
particular set of properties
Lightweight Instruction
Execution Stream
Agent J
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Executor

P

® An executor is an interface
that describes where, when
and how to execute work Function

® An executor can spawn one
or more light-weight
execution agents each
executing the same
instruction stream via
execution functions

Execution

Lightweight Instruction
Execution J Stream

Agent

® codeplay”’ © 2018 Codeplay Software Ltd.




Execution
Executor
Resource

—

® An execution resource is
the hardware abstraction
which is executing the work FUENET

® Examples of an execution
resource are a CPU thread
pool, GPU context, network

Execution

device Lightweight Instruction
Execution Stream
Agent

® codeplay”’

© 2018 Codeplay Software Ltd.




Execution Execution ]

Resource Context J Executor

' P

® An execution context is !
responsible for managing an // Execution
execution resource / Function

® An execution context provides 4
an executor for executing
work on it’s managed
execution resource

e An execution context — L Instruction
xecution Stream
manages a number of Agent J
light-weight execution agents
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static thread pool pool;

auto exec = pool.executor():

exec.execute([&] () { func();

b) s
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Properties of execution
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Properties Description

Cardinality Specifies whether the executor supports single and/or bulk execution

Directionality Specifies whether the executor supports oneway and/or twoway execution

Specifies whether the execution function will or may block the caller on

Blocking guarantees .
&8 completion
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Properties

Cardinality

Directionality

Blocking guarantees

® codeplay”’

Description

Specifies whether the executor supports single and/or bulk execution

Specifies whether the executor supports oneway and/or twoway execution

Specifies whether the execution function will or may block the caller on
completion

Properties which
modify the interface
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Properties Description

Specifies the way in which the instruction stream is mapped to threads of

Thread mapping semantics .
execution

Specifies the guarantees between threads of execution within a bulk

Bulk execution guarantees .
execution

Specifies whether the instruction stream should be executed as a

Continuation ) )
continuation

Specifies whether or not the execution context should expect future work to

Future work submission :
be submitted

Specifies the allocator to use when allocating memory for the instruction

Allocator
stream
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Executor customisation
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® Performing a require returns Executor
an executor that will have the
requested properties
o |If the properties are
already supported the
original executor is

[ Properties

returned S—
o |If the properties are not

supported this will result

in a compile-time error l

Executor
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® Performing a prefer returns Executor
an executor that may have
the requested properties

o If the properties are [.,m,ﬁ,e.rties]\v

already supported the
same executor is returned

o If the properties are not ey
supported the executor
will simply return the
original executor l

Executor
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® Performing a query returns Executor
the current value of a specific
property
O In many cases this value
will be a boolean
o In some cases this query
can be performed at
compile-time if
property::static_query_v l

[ Property

Query

is available

Value
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® Properties that are Executor
successfully requested via
require or prefer can be

supported in two ways [ Propertis | Properties ]\

O An executor
implementation can
natively support the

Require Prefer
property
O An executor can support a
property via an l l
adaptation

Executor Executor

— N )
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execution: :oneway executor exec;

auto newExec = execution::require (exec, twoway) ;

auto fut = newExec.twoway execute([&] () {
return func();

})

Require
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execution::oneway executor exec;

auto newExec = execution::require (exec, twoway);
auto fut = newExec.twoway execute ([&] () {
return func();
)i Require
execution: :possibly blocking executor exec;
auto newExec = execution::prefer (exec, never blocking);
newExec.execute ([&] () {
func() ;
}) i Prefer
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execution::oneway executor exec;
auto newExec = execution::require (exec, twoway);

auto fut = newExec.twoway execute ([&] () {
return func();

b Require

execution::possibly blocking executor exec;

auto newExec = executilon::prefer (exec, never blocking);
newkExec.execute ([&] () |
func () ;
)i Prefer

execution: :possibly blocking executor exec;
auto newExec = execution::prefer (exec, never blocking);

auto isNeverBlocking = execution: :query (newExec, never blocking) ;

Query
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Execution functions
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One-way

Two-way

Single

execute ()

twoway execute ()

Bulk

bulk execute ()

bulk twoway execute ()
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{

execution: :oneway executor exec;
exec.execute([&] () {
func () ;

})

Single One-way
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execution::oneway executor exec;
exec.execute ([&] ()
func () ;

1) ;

Single One-way

{

execution: :twoway executor exec;
auto fut = exec.twoway execute([&] () {
return func|();

}) s

Single Two-way
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execution::oneway executor exec; execution::twoway executor exec;
exec.execute ([&] () { auto fut = exec.twoway execute ([&] () {
func () ; return func();

1) ; 1) s

Single One-way Single Two-way

{

execution: :bulk executor exec;
exec.bulk execute([&] (size_t index,
auto &s) {
func (i, s);
}, shape, sharedFactory);

Bulk One-way
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{ {
execution::oneway executor exec; execution::twoway executor exec;
exec.execute ([&] () { auto fut = exec.twoway execute ([&] () {
func () ; return func();
b b) s
} }
Single One-way Single Two-way
{ {
execution: :bulk executor exec; execution: :bulk twoway executor exec;
exec.bulk execute([&] (size t index, auto fut = exec.bulk twoway execute (
auto &ST{ B [&] (size_t index, auto &r, auto &s) {
func (i, s); func(i, r, s);
}, shape, sharedFactory); }, shape, resultFactory, sharedFactory) ;
} }
Bulk One-way Bulk Two-way
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P1019r0 Integrating Executors with Parallel
Algorithms




vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on(exec), data.begin(), data.end()) ;s
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P0967r2 Supporting Heterogeneous &
Distributed Computing through Affinity




Why does C++ need affinity support?
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e All systems are inherently heterogeneous
o Desktop systems commonly have compute capable GPUs

o Server systems commonly have multiple CPU nodes or CPU + {GPU, FPGA,
DSP, TPU, etc } nodes

o Mobile and embedded systems commonly have GPUs and/or often other
specialised chips
e Many systems are distributed

o HPC server and cloud systems have a distribution of a large number of
interconnected nodes
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e Memory access is no longer simple

O

O O O O O

Distributed memory regions across NUMA nodes
Hierarchical GPU memory regions

On-chip shared memory

Off-chip DMA transfers

Shared virtual memory through cache coherency
High Bandwidth Memory (HBM)
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e Affinity is supported through many C++ libraries / standards
o Hwloc (Portable Hardware Locality)

OpenMP

MEMKIND

Cpuaff

Persistent Memory Programming

OpenCL / SYCL

HSA

Platform specific solutions: Windows / Linux / Solaris

Chapel, X10, UPC++

TBB

HPX

MADNESS

O O O O O O O O O O O
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What are we proposing?
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e Define an interface for discovering and querying affinity
o Solution needs to be able to discover all resources within a system and
query relative affinity between them
o Solution needs to provide memory and process affinity

® |ntegrate closely with the unified executors proposal
o Solution must align as closely as possible with the direction of the executors
design

® Ensure scalability to heterogeneous and distributed

systems
o Solution needs to consider the limitations of heterogeneous and distributed
systems to ensure scalability
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® Executor properties
o A collection of executor properties for describing affinity binding
guarantees
o Low granularity, relies on implementation applying property in an optimal
way
o Designed for users who are not particularly familiar with the architecture or
for users who do not need to fine tune their code for affinity

® Execution resource topology
o A framework for describing, discovering and querying the execution
resources available within the system
o High granularity, allows for fine grained control over affinity binding
o Designed for users who have a high understanding of the architecture and
for users who are implementing libraries or algorithms and need to fine
tune their code for affinity
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Bulk execution affinity properties
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e Executor property which requires that an executor provide

a particular guarantee of affinity binding pattern
o Pattern can be none, balanced, scatter or compact
o Requires that each execution agent be bound to a particular execution

resource before the callable is called.
o Binding must be consistent across all invocations of bulk_execute,
bulk_twoway_ execute or bulk_then_execute.
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Socket 0

Socket 1

Core 0

Core 1

Core 0

Core 1
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Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.none);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)
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Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 4 1 5 2 6 3 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.scatter);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)
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Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.compact) ;

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)
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Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.balanced);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)

® codeplay”’ © 2018 Codeplay Software Ltd.




vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static_ thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on (exec)

.with (execution: :bulk execution affinity.scatter),
data.begin(), data.end());
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vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static_ thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on (exec)

.with (execution: :bulk execution affinity.scatter),
datayyegin() , data.end());

Not yet proposed ]
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Execution resource topology
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this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements
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this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements
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this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package can_place_agents() == false
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements
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auto systemlevelResources =
std: :execution: :this system::get resources();

// output names of member resources
for (auto res : systemlLevelResources) {
std: :cout << res.name() << ”\n”;
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Querying relative affinity of execution
resources
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e An affinity query is constructed from two execution

resources

o An affinity query represents an operation:- read, write, copy, move, map

o An affinity query represents a metric:- latency, bandwidth, capacity, power
consumption

® Some operations have restrictions on the parameters
o Requires can place memory () orcan place agents () tobe
true

e Twoaffinity query objects can be compared
o Comparison operators return the relative affinity as a magnitude

e The native metric can be queried directly
o Bycallingnative metric()

® codeplay”’ © 2018 Codeplay Software Ltd.



auto readBfromA

affinity query<affinity::read, affinity::latency>(A, B);

auto readCfromA = affinity query<affinity::read, affinity::latency>(A, C);

auto isBMoreCostly = readBFromA > readCFromA;

auto isCMoreCostly = readCFromA > readBFromA;
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this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements
relativeLatency = > affinity_query<read, latency>(core3, numa0)
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Binding execution & allocation
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® Anexecution context canthen be used to execute

work and allocate memory

© Anexecution context provides an executor to execute work on the
execution resources it represents

0 Anexecution context provides an allocator to allocate memory with
affinity to the execution resources it represents

® For example:

0 The execution context ofa NUMA node execution resource
may allow you to allocate memory and execute work with affinity to that
node

0 Anexecution context of the local memory region of a GPU
execution resource may allow you to allocate memory with affinity
to that node but not to execute work
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if (execResource.can place agents()) {

execution context execContext (execResource) ;

auto exec = execContext.executor() ;

exec.bulk oneway execute([] (size t index) {
some function() ;
}, size);
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if (execResource.can place memory()) {

using allocator t = vendor_ a::execution context::allocator type;

auto execContext = vendor a::execution context (execResource) ;

auto memoryResource = execContext.memory resource();

auto myVector = std::pmr::vector(allocator t{memoryResource});
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