® codeplay’

Towards Heterogeneous and Distributed
Computing in C++

Gordon Brown — Senior Software Engineer, SYCL & C++
Ruyman Reyes - Principal Software Eng., Programming Models
Michael Wong — VP of R&D, SYCL Chair, Chair of ISO C++ TM/Low Latency

DHPCC++ — May 2018

Leadership Products Enabling Advanced Applications
on Complex Processor Systems

Markets

Vision Processing
Machine Learning
Data Compute

Company
High-performance software solutions for custom
heterogeneous systems

Enabling the toughest processor systems with
open-standards-based tools and middleware

Established 2002 in Scotland, UK

High Performance Computing (HPC)
Automotive (ISO 26262)

loT, Smartphones & Tablets

Medical & Industrial

Products Partners
C ComputeCpp - AMD 21 ARM
C++ platform with SYCL, enabling vision
. . I ™
and machine learning applications e.g. TensorFlow ‘sroAbcom. q:l (magination
A Computerrta‘“ QUALCONVV\ Many Global
Companies

The heart of Codeplay's compute technology, enabling

TR ¥
OpenCL™, SPIR™, HSA™ and Vulkan™ Movidius %

® codeplay”’ © 2018 Codeplay Software Ltd.

About me...

e Background in C++ programming models for
heterogeneous systems

* Developer with Codeplay Software for 6 years

* Worked on ComputeCpp (SYCL) since it’s inception

* Contributor to the Khronos SYCL standard for over 5
years

* Contributor to C++ executors and heterogeneity for 2
years

® codeplay”’ © 2018 Codeplay Software Ltd.

Disclaimer

A\

The proposals describe here are work in progress
These may not reflect the final proposals

® codeplay”’ © 2018 Codeplay Software Ltd.

Acknowledgements

Jared Hoberock, Chris Kohlhoff, Chris Mysen, Michael Garland,

Michael Wong, Carter Edwards, Hartmut Kaiser, Hans Boehm,

Torvald Riegel, Lee Howes, David Hollman, Bryce Lelbach, Gor

Nishanov, Thomas Heller, Geoffrey Romer, H. Carter Edwards,

Thomas Rodgers, Mark Hoemmen, Patrice Roy, Carl Cook, Jeff
Hammond, Christian Trott, Paul Blinzer, Alex Voicu, Nat
Goodspeed, Christopher Di Bella, Toomas Remmelg and

Morris Hafner

® codeplay”’ © 2018 Codeplay Software Ltd.

Agenda

e P0443r7 A Unified Executors Proposal for C++

e P1019r0 Integrating Executors with Parallel Algorithms

e P0796r2 Supporting Heterogeneous & Distributed
Computing Through Affinity

® codeplay”’ © 2018 Codeplay Software Ltd.

P0443r7 A Unified Executors Proposal for
C++

® codeplay”’ © 2018 Codeplay Software Ltd.

What are executors?

® codeplay”’ © 2018 Codeplay Software Ltd.

invoke async parallel algorithms future::then post

defer define_task_block dispatch asynchronous operations strand<>

Unified interface for execution

SYCL / OpenCL / Boost.Asio /
CUDA / HCC OpenMP / MPI C++ Thread Pool Vetheiline T

® codeplay’ © 2018 Codeplay Software Ltd.

Topology of execution

® codeplay”’ © 2018 Codeplay Software Ltd.

® An instruction stream is a
callable object that is to be
executed

Instruction
Stream

® codeplay”’ © 2018 Codeplay Software Ltd.

e A light-weight execution
agent is a single thread of
execution executing the
Instruction stream

Lightweight\ Instruction
Execution J Stream

Agent

® codeplay”’

© 2018 Codeplay Software Ltd.

® An execution function is a
function which executes an

Execution
instruction stream on one LB
or more light-weight h——
execution agents with a
particular set of properties
Lightweight Instruction
Execution Stream
Agent J

® codeplay”’

© 2018 Codeplay Software Ltd.

Executor

P

® An executor is an interface
that describes where, when
and how to execute work Function

® An executor can spawn one
or more light-weight
execution agents each
executing the same
instruction stream via
execution functions

Execution

Lightweight Instruction
Execution J Stream

Agent

® codeplay”’ © 2018 Codeplay Software Ltd.

Execution
Executor
Resource

—

® An execution resource is
the hardware abstraction
which is executing the work FUENET

® Examples of an execution
resource are a CPU thread
pool, GPU context, network

Execution

device Lightweight Instruction
Execution Stream
Agent

® codeplay”’

© 2018 Codeplay Software Ltd.

Execution Execution]

Resource Context J Executor

' P

® An execution context is !
responsible for managing an // Execution
execution resource / Function

® An execution context provides 4
an executor for executing
work on it’s managed
execution resource

e An execution context — L Instruction
xecution Stream
manages a number of Agent J
light-weight execution agents

® codeplay”’ © 2018 Codeplay Software Ltd.

static thread pool pool;

auto exec = pool.executor():

exec.execute([&] () { func();

b) s

® codeplay”’

© 2018 Codeplay Software Ltd.

Properties of execution

® codeplay”’ © 2018 Codeplay Software Ltd.

Properties Description

Cardinality Specifies whether the executor supports single and/or bulk execution

Directionality Specifies whether the executor supports oneway and/or twoway execution

Specifies whether the execution function will or may block the caller on

Blocking guarantees .
&8 completion

® codeplay”’ © 2018 Codeplay Software Ltd.

Properties

Cardinality

Directionality

Blocking guarantees

® codeplay”’

Description

Specifies whether the executor supports single and/or bulk execution

Specifies whether the executor supports oneway and/or twoway execution

Specifies whether the execution function will or may block the caller on
completion

Properties which
modify the interface

© 2018 Codeplay Software Ltd.

Properties Description

Specifies the way in which the instruction stream is mapped to threads of

Thread mapping semantics .
execution

Specifies the guarantees between threads of execution within a bulk

Bulk execution guarantees .
execution

Specifies whether the instruction stream should be executed as a

Continuation))
continuation

Specifies whether or not the execution context should expect future work to

Future work submission :
be submitted

Specifies the allocator to use when allocating memory for the instruction

Allocator
stream

® codeplay”’ © 2018 Codeplay Software Ltd.

Executor customisation

® codeplay”’ © 2018 Codeplay Software Ltd.

® Performing a require returns Executor
an executor that will have the
requested properties
o |If the properties are
already supported the
original executor is

[Properties

returned S—
o |If the properties are not

supported this will result

in a compile-time error l

Executor

® codeplay”’ © 2018 Codeplay Software Ltd.

® Performing a prefer returns Executor
an executor that may have
the requested properties

o If the properties are [.,m,ﬁ,e.rties]\v

already supported the
same executor is returned

o If the properties are not ey
supported the executor
will simply return the
original executor l

Executor

® codeplay”’ © 2018 Codeplay Software Ltd.

® Performing a query returns Executor
the current value of a specific
property
O In many cases this value
will be a boolean
o In some cases this query
can be performed at
compile-time if
property::static_query_v l

[Property

Query

is available

Value

® codeplay”’ © 2018 Codeplay Software Ltd.

® Properties that are Executor
successfully requested via
require or prefer can be

supported in two ways [Propertis | Properties]\

O An executor
implementation can
natively support the

Require Prefer
property
O An executor can support a
property via an l l
adaptation

Executor Executor

— N)

® codeplay”’ © 2018 Codeplay Software Ltd.

execution: :oneway executor exec;

auto newExec = execution::require (exec, twoway) ;

auto fut = newExec.twoway execute([&] () {
return func();

})

Require

® codeplay”’

© 2018 Codeplay Software Ltd.

execution::oneway executor exec;

auto newExec = execution::require (exec, twoway);
auto fut = newExec.twoway execute ([&] () {
return func();
)i Require
execution: :possibly blocking executor exec;
auto newExec = execution::prefer (exec, never blocking);
newExec.execute ([&] () {
func() ;
}) i Prefer

® codeplay”’

© 2018 Codeplay Software Ltd.

execution::oneway executor exec;
auto newExec = execution::require (exec, twoway);

auto fut = newExec.twoway execute ([&] () {
return func();

b Require

execution::possibly blocking executor exec;

auto newExec = executilon::prefer (exec, never blocking);
newkExec.execute ([&] () |
func () ;
)i Prefer

execution: :possibly blocking executor exec;
auto newExec = execution::prefer (exec, never blocking);

auto isNeverBlocking = execution: :query (newExec, never blocking) ;

Query

® codeplay”’ © 2018 Codeplay Software Ltd.

Execution functions

® codeplay”’ © 2018 Codeplay Software Ltd.

One-way

Two-way

Single

execute ()

twoway execute ()

Bulk

bulk execute ()

bulk twoway execute ()

® codeplay”’

© 2018 Codeplay Software Ltd.

{

execution: :oneway executor exec;
exec.execute([&] () {
func () ;

})

Single One-way

® codeplay”’

© 2018 Codeplay Software Ltd.

execution::oneway executor exec;
exec.execute ([&] ()
func () ;

1) ;

Single One-way

{

execution: :twoway executor exec;
auto fut = exec.twoway execute([&] () {
return func|();

}) s

Single Two-way

® codeplay”’

© 2018 Codeplay Software Ltd.

execution::oneway executor exec; execution::twoway executor exec;
exec.execute ([&] () { auto fut = exec.twoway execute ([&] () {
func () ; return func();

1) ; 1) s

Single One-way Single Two-way

{

execution: :bulk executor exec;
exec.bulk execute([&] (size_t index,
auto &s) {
func (i, s);
}, shape, sharedFactory);

Bulk One-way

® codeplay”’ © 2018 Codeplay Software Ltd.

{ {
execution::oneway executor exec; execution::twoway executor exec;
exec.execute ([&] () { auto fut = exec.twoway execute ([&] () {
func () ; return func();
b b) s
} }
Single One-way Single Two-way
{ {
execution: :bulk executor exec; execution: :bulk twoway executor exec;
exec.bulk execute([&] (size t index, auto fut = exec.bulk twoway execute (
auto &ST{ B [&] (size_t index, auto &r, auto &s) {
func (i, s); func(i, r, s);
}, shape, sharedFactory); }, shape, resultFactory, sharedFactory) ;
} }
Bulk One-way Bulk Two-way

® codeplay”’ © 2018 Codeplay Software Ltd.

P1019r0 Integrating Executors with Parallel
Algorithms

vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on(exec), data.begin(), data.end()) ;s

® codeplay”’

© 2018 Codeplay Software Ltd.

P0967r2 Supporting Heterogeneous &
Distributed Computing through Affinity

Why does C++ need affinity support?

® codeplay”’ © 2018 Codeplay Software Ltd.

e All systems are inherently heterogeneous
o Desktop systems commonly have compute capable GPUs

o Server systems commonly have multiple CPU nodes or CPU + {GPU, FPGA,
DSP, TPU, etc } nodes

o Mobile and embedded systems commonly have GPUs and/or often other
specialised chips
e Many systems are distributed

o HPC server and cloud systems have a distribution of a large number of
interconnected nodes

® codeplay”’

© 2018 Codeplay Software Ltd.

e Memory access is no longer simple

O

O O O O O

Distributed memory regions across NUMA nodes
Hierarchical GPU memory regions

On-chip shared memory

Off-chip DMA transfers

Shared virtual memory through cache coherency
High Bandwidth Memory (HBM)

® codeplay”’

© 2018 Codeplay Software Ltd.

e Affinity is supported through many C++ libraries / standards
o Hwloc (Portable Hardware Locality)

OpenMP

MEMKIND

Cpuaff

Persistent Memory Programming

OpenCL / SYCL

HSA

Platform specific solutions: Windows / Linux / Solaris

Chapel, X10, UPC++

TBB

HPX

MADNESS

O O O O O O O O O O O

® codeplay”’ © 2018 Codeplay Software Ltd.

What are we proposing?

® codeplay”’ © 2018 Codeplay Software Ltd.

e Define an interface for discovering and querying affinity
o Solution needs to be able to discover all resources within a system and
query relative affinity between them
o Solution needs to provide memory and process affinity

® |ntegrate closely with the unified executors proposal
o Solution must align as closely as possible with the direction of the executors
design

® Ensure scalability to heterogeneous and distributed

systems
o Solution needs to consider the limitations of heterogeneous and distributed
systems to ensure scalability

® codeplay”’ © 2018 Codeplay Software Ltd.

® Executor properties
o A collection of executor properties for describing affinity binding
guarantees
o Low granularity, relies on implementation applying property in an optimal
way
o Designed for users who are not particularly familiar with the architecture or
for users who do not need to fine tune their code for affinity

® Execution resource topology
o A framework for describing, discovering and querying the execution
resources available within the system
o High granularity, allows for fine grained control over affinity binding
o Designed for users who have a high understanding of the architecture and
for users who are implementing libraries or algorithms and need to fine
tune their code for affinity

® codeplay”’ © 2018 Codeplay Software Ltd.

Bulk execution affinity properties

® codeplay”’ © 2018 Codeplay Software Ltd.

e Executor property which requires that an executor provide

a particular guarantee of affinity binding pattern
o Pattern can be none, balanced, scatter or compact
o Requires that each execution agent be bound to a particular execution

resource before the callable is called.
o Binding must be consistent across all invocations of bulk_execute,
bulk_twoway_ execute or bulk_then_execute.

® codeplay”’ © 2018 Codeplay Software Ltd.

Socket 0

Socket 1

Core 0

Core 1

Core 0

Core 1

® codeplay”’

© 2018 Codeplay Software Ltd.

Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.none);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)

® codeplay”’

© 2018 Codeplay Software Ltd.

Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 4 1 5 2 6 3 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.scatter);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)

® codeplay”’ © 2018 Codeplay Software Ltd.

Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.compact) ;

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)

® codeplay”’

© 2018 Codeplay Software Ltd.

Socket 0 Socket 1
Core 0 Core 1 Core 0 Core 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7

auto exec = execution::execution context{execRes}.executor();

auto affExec = execution::require (exec, execution: :bulk,
execution: :bulk execution affinity.balanced);

affExec.bulk execute([] (std::size t i, shared s) ({
func (i) ;
}, 8, sharedFactory)

® codeplay”’ © 2018 Codeplay Software Ltd.

vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static_ thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on (exec)

.with (execution: :bulk execution affinity.scatter),
data.begin(), data.end());

® codeplay”’

© 2018 Codeplay Software Ltd.

vector<int> data = { 4, 9, 5, 1, 3, 9, 5, 0, 3, 5, 1, 3 };

execution: :static_ thread pool pool;
auto exec = pool.executor();

sort (execution: :par.on (exec)

.with (execution: :bulk execution affinity.scatter),
datayyegin() , data.end());

Not yet proposed]

® codeplay”’

© 2018 Codeplay Software Ltd.

Execution resource topology

® codeplay”’ © 2018 Codeplay Software Ltd.

this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements

® codeplay”’ © 2018 Codeplay Software Ltd.

this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements

® codeplay”’ © 2018 Codeplay Software Ltd.

this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package can_place_agents() == false
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements

® codeplay”’ © 2018 Codeplay Software Ltd.

auto systemlevelResources =
std: :execution: :this system::get resources();

// output names of member resources
for (auto res : systemlLevelResources) {
std: :cout << res.name() << ”\n”;

® codeplay”’ © 2018 Codeplay Software Ltd.

Querying relative affinity of execution
resources

® codeplay”’ © 2018 Codeplay Software Ltd.

e An affinity query is constructed from two execution

resources

o An affinity query represents an operation:- read, write, copy, move, map

o An affinity query represents a metric:- latency, bandwidth, capacity, power
consumption

® Some operations have restrictions on the parameters
o Requires can place memory () orcan place agents () tobe
true

e Twoaffinity query objects can be compared
o Comparison operators return the relative affinity as a magnitude

e The native metric can be queried directly
o Bycallingnative metric()

® codeplay”’ © 2018 Codeplay Software Ltd.

auto readBfromA

affinity query<affinity::read, affinity::latency>(A, B);

auto readCfromA = affinity query<affinity::read, affinity::latency>(A, C);

auto isBMoreCostly = readBFromA > readCFromA;

auto isCMoreCostly = readCFromA > readBFromA;

® codeplay”’ © 2018 Codeplay Software Ltd.

this_system::get_resources()

SyStem_Ievel Place where std::thread executes GPU
resources
Package
Numa 0 Numa 1 Work Groups
Core 0 Core 1 Core 2 Core 3 Processing Elements
relativeLatency = > affinity_query<read, latency>(core3, numa0)

® codeplay”’ © 2018 Codeplay Software Ltd.

Binding execution & allocation

® codeplay”’ © 2018 Codeplay Software Ltd.

® Anexecution context canthen be used to execute

work and allocate memory

© Anexecution context provides an executor to execute work on the
execution resources it represents

0 Anexecution context provides an allocator to allocate memory with
affinity to the execution resources it represents

® For example:

0 The execution context ofa NUMA node execution resource
may allow you to allocate memory and execute work with affinity to that
node

0 Anexecution context of the local memory region of a GPU
execution resource may allow you to allocate memory with affinity
to that node but not to execute work

® codeplay”’ © 2018 Codeplay Software Ltd.

if (execResource.can place agents()) {

execution context execContext (execResource) ;

auto exec = execContext.executor() ;

exec.bulk oneway execute([] (size t index) {
some function() ;
}, size);

® codeplay”’

© 2018 Codeplay Software Ltd.

if (execResource.can place memory()) {

using allocator t = vendor_ a::execution context::allocator type;

auto execContext = vendor a::execution context (execResource) ;

auto memoryResource = execContext.memory resource();

auto myVector = std::pmr::vector(allocator t{memoryResource});

® codeplay”’ © 2018 Codeplay Software Ltd.

@® codeplay”’

Thank you for Listening

@codeplaysoft info@codeplay.com codeplay.com

